2,321 research outputs found

    State and local governments

    Get PDF
    The Virginia Space Grant Consortium approach to a close working relation to state and local governments is presented as a model for consideration. State government relations are especially important in that this is a primary resource in securing matching funds. Avenues for establishing these relationships are listed and discussed

    Annihilator Banach ∗-algebras and the Peter-Weyl theorem

    Get PDF
    The QUO VADIS (the effects of QUinapril On Vascular Ace and Determinants of ISchemia) study was a randomized, double-blind, placebo-controlled trial designed to evaluate the effects of long-term angiotensin-converting enzyme (ACE) inhibition on angiotensin II formation in human vasculature. Patients (n <187) scheduled for coronary artery bypass surgery used study medication 27 +/- 1 days before surgery. Segments of internal mammary arteries were exposed to increasing doses (0.1 nM-1 mu M) of angiotensin I and II in organ baths. The rate of local angiotensin II formation is a function of the reciprocal of the difference between the pEC(50)'s of the dose response curves to angiotensin I and II (-log/mol) and of the area between the curves (units). Quinapril (40 mg) and captopril (3x50 mg) similarly and significantly reduced mean blood pressure compared with placebo (p = 0.04). Difference between pEC(50)'s was 0.90 +/- 0.08 in quinapril patients compared with 0.60 +/- 0.08 for placebo (p <5 0.01); the area between curves was 91 +/- 8 for quinapril patients compared with 67 +/- 8 for placebo (p = 0.03). Angiotensin II formation was decreased to a lesser extent with captopril and was not statistically different from placebo (p = 0.3); the difference between pEC(50)'s was 0.83 +/- 0.15; the area between curves was 84 +/- 12. This is the first randomized study to demonstrate that long-term oral treatment with an ACE inhibitor reduces vascular angiotensin II formation in humans

    Demonstration of Subscale Cermet Fuel Specimen Fabrication Approach Using Spark Plasma Sintering and Diffusion Bonding

    Get PDF
    Nuclear thermal propulsion (NTP) has the potential to expand the limits of human space exploration by enabling crewed missions to Mars and beyond. The viability of NTP hinges on the development of a robust nuclear fuel material that can perform in the harsh operating environment (> or = 2500K, reactive hydrogen) of a nuclear thermal rocket (NTR) engine. Efforts are ongoing to develop fuel material and to assemble fuel elements that will be stable during the service life of an NTR. Ceramic-metal (cermet) fuels are being actively pursued by NASA Marshall Space Flight Center (MSFC) due to their demonstrated high-temperature stability and hydrogen compatibility. Building on past cermet fuel development research, experiments were conducted to investigate a modern fabrication approach for cermet fuel elements. The experiments used consolidated tungsten (W)-60vol%zirconia (ZrO2) compacts that were formed via spark plasma sintering (SPS). The consolidated compacts were stacked and diffusion bonded to assess the integrity of the bond lines and internal cooling channel cladding. The assessment included hot hydrogen testing of the manufactured surrogate fuel and pure W for 45 minutes at 2500 K in the compact fuel element environmental test (CFEET) system. Performance of bonded W-ZrO2 rods was compared to bonded pure W rods to access bond line integrity and composite stability. Bonded surrogate fuels retained structural integrity throughout testing and incurred minimal mass loss

    Theory of mind in utterance interpretation: the case from clinical pragmatics

    Get PDF
    The cognitive basis of utterance interpretation is an area that continues to provoke intense theoretical debate among pragmatists. That utterance interpretation involves some type of mind-reading or theory of mind (ToM) is indisputable. However, theorists are divided on the exact nature of this ToM-based mechanism. In this paper, it is argued that the only type of ToM-based mechanism that can adequately represent the cognitive basis of utterance interpretation is one which reflects the rational, intentional, holistic character of interpretation. Such a ToM-based mechanism is supported on conceptual and empirical grounds. Empirical support for this view derives from the study of children and adults with pragmatic disorders. Specifically, three types of clinical case are considered. In the first case, evidence is advanced which indicates that individuals with pragmatic disorders exhibit deficits in reasoning and the use of inferences. These deficits compromise the ability of children and adults with pragmatic disorders to comply with the rational dimension of utterance interpretation

    Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

    Get PDF
    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nu- clear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and de ne a fabrication process that will serve for constructing grooved ring fuel rods for large system tests

    Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores

    Get PDF
    Breast and prostate cancer risks; Pathogenic variantRiscos de càncer de mama i pròstata; Variants patogèniquesRiesgos de cáncer de mama y próstata; Variantes patogénicasBackground Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers. Methods 483 BRCA1 and 1318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were 3 versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen receptor (ER)–negative (PRSER-), or ER-positive (PRSER+) breast cancer risk. Results PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07 to 1.83) for BRCA1 and 1.33 (95% CI = 1.16 to 1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for BRCA1 (OR = 1.73, 95% CI = 1.28 to 2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34 to 1.91) carriers. The estimated breast cancer odds ratios were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions. Conclusions Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and informing clinical management.The CIMBA data management and data analysis were supported by Cancer Research UK grants C12292/A20861 and PPRPGM-Nov20\100002. The research leading to these results has received funding from the Italian Association for Cancer Research (AIRC) under IG 2018 - ID. 21389 and the Italian League for the Fight Against Cancer (LILT) under IG 2019 projects, P.I. Ottini Laura and Italian Ministry of Education, Universities and Research-Dipartimenti di Eccellenza-L. 232/2016. CIMBA: GCT is a National Health and Medical Research Council (NHMRC) Research Fellow. iCOGS and OncoArray data: the European Community’s Seventh Framework Programme under grant agreement No. 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (NIH) (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer (CRN-87521), and the Ministry of Economic Development, Innovation and Export Trade (PSR-SIIRI-701), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The Personalized Risk Stratification for Prevention and Early Detection of Breast Cancer (PERSPECTIVE) and PERSPECTIVE I&I projects were supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the Ministry of Economy and Innovation through Genome Québec, and The Quebec Breast Cancer Foundation and the Ontario Research Fund. Breast Cancer Family Registry (BCFR): UM1 CA164920 from the National Cancer Institute (NCI). Baltic Familial Breast Ovarian Cancer Consortium (BFBOCC): Lithuania (BFBOCC-LT): Research Council of Lithuania grant SEN-18/2015. Beth Israel Deaconess Medical Center (BIDMC): Breast Cancer Research Foundation. BRCA-gene mutations and breast cancer in South African women (BMBSA): Cancer Association of South Africa (PI Elizabeth J. van Rensburg). Spanish National Cancer Centre (CNIO): Spanish Ministry of Health PI16/00440 supported by Fondo Europeo de Desarrollo Regional (FEDER) funds, the Spanish Ministry of Economy and Competitiveness (MINECO) SAF2014-57680-R and the Spanish Research Network on Rare diseases (CIBERER). City of Hope - Clinical Cancer Genomics Community Research Network (COH-CCGCRN): Research reported in this publication was supported by the NCI of the NIH under grant No. R25CA112486, and RC4CA153828 (PI: J. Weitzel) from the NCI and the Office of the Director, NIH. CONsorzio Studi ITaliani sui Tumori Ereditari Alla Mammella (CONSIT TEAM): Associazione Italiana Ricerca sul Cancro (AIRC; IG2014 No.15547) to P. Radice. Funds from Italian citizens who allocated the 5x1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5x1000’) to S. Manoukian. Associazione CAOS Varese to M.G. Tibiletti. AIRC (IG2015 No.16732) to P. Peterlongo. National Centre for Scientific Research Demokritos (DEMOKRITOS): European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program of the General Secretariat for Research & Technology: SYN11_10_19 NBCA. Investing in knowledge society through the European Social Fund. German Cancer Research Center (DFKZ): German Cancer Research Center. Epidemiological Study of Familial Breast Cancer (EMBRACE): Cancer Research UK Grants C1287/A10118 and C1287/A11990. D. Gareth Evans and Fiona Lalloo are supported by an National Institute for Health Research (NIHR) grant to the Biomedical Research Centre, Manchester. The Investigators at The Institute of Cancer Research and The Royal Marsden National Health Service (NHS) Foundation Trust are supported by an NIHR grant to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Ros Eeles and Elizabeth Bancroft are supported by Cancer Research UK Grant C5047/A8385. Ros Eeles is also supported by NIHR support to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Fox Chase Cancer Center (FCCC): The University of Kansas Cancer Center (P30 CA168524) and the Kansas Bioscience Authority Eminent Scholar Program. AKG was in part funded by the NCI (R01 CA214545 and R01 CA140323), The Kansas Institute for Precision Medicine (P20 GM130423), and the Kansas Bioscience Authority Eminent Scholar Program. A.K.G. is the Chancellors Distinguished Chair in Biomedical Sciences Professor. Fundación Pública Galega de Medicina Xenómica (FPGMX): FISPI05/2275 and Mutua Madrileña Foundation (FMMA). German Familial Breast Group (GC-HBOC): German Cancer Aid (grant No. 110837, Rita K. Schmutzler) and the European Regional Development Fund and Free State of Saxony, Germany (LIFE—Leipzig Research Centre for Civilization Diseases, project No. 713-241202, No. 713-241202, No. 14505/2470, and No. 14575/2470). Genetic Modifiers of cancer risk in BRCA1/2 mutation carriers (GEMO): Ligue Nationale Contre le Cancer; the Association “Le cancer du sein, parlons-en!” Award, the Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program and the French National Institute of Cancer (INCa grants 2013-1-BCB-01-ICH-1 and SHS-E-SP 18-015). Georgetown University (GEORGETOWN): the Non-Therapeutic Subject Registry Shared Resource at Georgetown University (NIH/NCI grant P30-CA051008), the Fisher Center for Hereditary Cancer and Clinical Genomics Research, and Swing Fore the Cure. Ghent University Hospital (G-FAST): Bruce Poppe is a senior clinical investigator of FWO. Mattias Van Heetvelde obtained funding from IWT. Hospital Clinico San Carlos (HCSC): Spanish Ministry of Health PI15/00059, PI16/01292, and CB-161200301 CIBERONC from ISCIII (Spain), partially supported by European Regional Development FEDER funds. Helsinki Breast Cancer Study (HEBCS): Helsinki University Hospital Research Fund, the Finnish Cancer Society and the Sigrid Juselius Foundation. Hereditary Breast and Ovarian cancer study the Netherlands (HEBON): the Dutch Cancer Society grants NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organization of Scientific Research grant NWO 91109024, the Pink Ribbon grants 110005 and 2014-187.WO76, the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI) grant NWO 184.021.007/CP46 and the Transcan grant JTC 2012 Cancer 12-054. HEBON thanks the registration teams of Dutch Cancer Registry (IKNL; S. Siesling, J. Verloop) and the Dutch Pathology database (PALGA; L. Overbeek) for part of the data collection. Study of Genetic Mutations in Breast and Ovarian Cancer patients in Hong Kong and Asia (HRBCP): Hong Kong Sanatorium and Hospital, Dr Ellen Li Charitable Foundation, The Kerry Group Kuok Foundation, National Institute of Health1R 03CA130065, and North California Cancer Center. Molecular Genetic Studies of Breast- and Ovarian Cancer in Hungary (HUNBOCS): Hungarian Research Grants KTIA-OTKA CK-80745 and NKFI_OTKA K-112228. Institut Català d’Oncologia (ICO): The authors would like to particularly acknowledge the support of the Asociación Española Contra el Cáncer (AECC), the Instituto de Salud Carlos III (organismo adscrito al Ministerio de Economía y Competitividad) and “FEDER, una manera de hacer Europa” (PI10/01422, PI13/00285, PIE13/00022, PI15/00854, PI16/00563 and CIBERONC) and the Institut Català de la Salut and Autonomous Government of Catalonia (2009SGR290, 2014SGR338 and PERIS Project MedPerCan). International Hereditary Cancer Centre (IHCC): PBZ_KBN_122/P05/2004. Iceland Landspitali – University Hospital (ILUH): Icelandic Association “Walking for Breast Cancer Research” and by the Landspitali University Hospital Research Fund. INterdisciplinary HEalth Research Internal Team BReast CAncer susceptibility (INHERIT): Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program—grant No. CRN-87521 and the Ministry of Economic Development, Innovation and Export Trade—grant No. PSR-SIIRI-701. Istituto Oncologico Veneto (IOVHBOCS): Ministero della Salute and “5x1000” Istituto Oncologico Veneto grant. Portuguese Oncology Institute-Porto Breast Cancer Study (IPOBCS): Liga Portuguesa Contra o Cancro. Kathleen Cuningham Consortium for Research into Familial Breast Cancer (kConFab): The National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. Korean Hereditary Breast Cancer Study (KOHBRA): the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), and the National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (HI16C1127; 1020350; 1420190). Mayo Clinic (MAYO): NIH grants CA116167, CA192393 and CA176785, an NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), and a grant from the Breast Cancer Research Foundation. McGill University (MCGILL): Jewish General Hospital Weekend to End Breast Cancer, Quebec Ministry of Economic Development, Innovation and Export Trade. Marc Tischkowitz is supported by the funded by the European Union Seventh Framework Program (2007Y2013)/European Research Council (Grant No. 310018). Modifier Study of Quantitative Effects on Disease (MODSQUAD): MH CZ—DRO (MMCI, 00209805), MEYS—NPS I—LO1413 to LF, and by Charles University in Prague project UNCE204024 (MZ). Memorial Sloane Kettering Cancer Center (MSKCC): the Breast Cancer Research Foundation, the Robert and Kate Niehaus Clinical Cancer Genetics Initiative, the Andrew Sabin Research Fund and a Cancer Center Support Grant/Core Grant (P30 CA008748). Women’s College Research Institute Hereditary Breast and Ovarian Cancer Study (NAROD): 1R01 CA149429-01. National Cancer Institute (NCI): the Intramural Research Program of the US NCI, NIH, and by support services contracts NO2-CP-11019-50, N02-CP-21013-63 and N02-CP-65504 with Westat, Inc, Rockville, MD. National Israeli Cancer Control Center (NICCC): Clalit Health Services in Israel, the Israel Cancer Association and the Breast Cancer Research Foundation (BCRF), NY. N.N. Petrov Institute of Oncology (NNPIO): the Russian Foundation for Basic Research (grants 17-54-12007, 17-00-00171 and 18-515-12007). NRG Oncology: U10 CA180868, NRG SDMC grant U10 CA180822, NRG Administrative Office and the NRG Tissue Bank (CA 27469), the NRG Statistical and Data Center (CA 37517) and the Intramural Research Program, NCI. The Ohio State University Comprehensive Cancer Center (OSUCCG): Ohio State University Comprehensive Cancer Center. Università di Pisa (PBCS): AIRC [IG 2013 N.14477] and Tuscany Institute for Tumors (ITT) grant 2014-2015-2016. South East Asian Breast Cancer Association Study (SEABASS): Ministry of Science, Technology and Innovation, Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation. Sheba Medical Centre (SMC): the Israeli Cancer Association. Swedish Breast Cancer Study (SWE-BRCA): the Swedish Cancer Society. University of Chicago (UCHICAGO): NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA125183), R01 CA142996, 1U01CA161032 and by the Ralph and Marion Falk Medical Research Trust, the Entertainment Industry Fund National Women’s Cancer Research Alliance and the Breast Cancer research Foundation. OIO is an American Cancer Society (ACS) Clinical Research Professor. University of California Los Angeles (UCLA): Jonsson Comprehensive Cancer Center Foundation; Breast Cancer Research Foundation. University of California San Francisco (UCSF): UCSF Cancer Risk Program and Helen Diller Family Comprehensive Cancer Center. UK Familial Ovarian Cancer Registry (UKFOCR): Cancer Research UK. University of Pennsylvania (UPENN): NIH (R01-CA102776 and R01-CA083855); Breast Cancer Research Foundation; Susan G. Komen Foundation for the cure, Basser Research Center for BRCA. Cancer Family Registry University of Pittsburg (UPITT/MWH): Hackers for Hope Pittsburgh. Victorian Familial Cancer Trials Group (VFCTG): Victorian Cancer Agency, Cancer Australia, National Breast Cancer Foundation. Women’s Cancer Program at Cedars-Sinai Medical Center (WCP): Dr Karlan is funded by the ACS Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124. TN-D is a recipient of a Career Development Fellow from the National Breast Cancer Foundation (Australia, ECF-17-001)
    corecore