2,732 research outputs found
Protocol for the Delirium and Cognitive Impact in Dementia (DECIDE) study: A nested prospective longitudinal cohort study
BACKGROUND:
Delirium is common, affecting at least 20% of older hospital inpatients. It is widely accepted that delirium is associated with dementia but the degree of causation within this relationship is unclear. Previous studies have been limited by incomplete ascertainment of baseline cognition or a lack of prospective delirium assessments. There is an urgent need for an improved understanding of the relationship between delirium and dementia given that delirium prevention may plausibly impact upon dementia prevention. A well-designed, observational study could also answer fundamental questions of major importance to patients and their families regarding outcomes after delirium.
The Delirium and Cognitive Impact in Dementia (DECIDE) study aims to explore the association between delirium and cognitive function over time in older participants. In an existing population based cohort aged 65 years and older, the effect on cognition of an episode of delirium will be measured, independent of baseline cognition and illness severity. The predictive value of clinical parameters including delirium severity, baseline cognition and delirium subtype on cognitive outcomes following an episode of delirium will also be explored.
METHODS:
Over a 12 month period, surviving participants from the Cognitive Function and Ageing Study II-Newcastle will be screened for delirium on admission to hospital. At the point of presentation, baseline characteristics along with a number of disease relevant clinical parameters will be recorded. The progression/resolution of delirium will be monitored. In those with and without delirium, cognitive decline and dementia will be assessed at one year follow-up. We will evaluate the effect of delirium on cognitive function over time along with the predictive value of clinical parameters.
DISCUSSION:
This study will be the first to prospectively elucidate the size of the effect of delirium upon cognitive decline and incident dementia. The results will be used to inform future dementia prevention trials that focus on delirium intervention
Palmoplantar keratoderma along with neuromuscular and metabolic phenotypes in Slurp1-deficient mice.
Mutations in SLURP1 cause mal de Meleda, a rare palmoplantar keratoderma (PPK). SLURP1 is a secreted protein that is expressed highly in keratinocytes but has also been identified elsewhere (e.g., spinal cord neurons). Here, we examined Slurp1-deficient mice (Slurp1(-/-)) created by replacing exon 2 with β-gal and neo cassettes. Slurp1(-/-) mice developed severe PPK characterized by increased keratinocyte proliferation, an accumulation of lipid droplets in the stratum corneum, and a water barrier defect. In addition, Slurp1(-/-) mice exhibited reduced adiposity, protection from obesity on a high-fat diet, low plasma lipid levels, and a neuromuscular abnormality (hind-limb clasping). Initially, it was unclear whether the metabolic and neuromuscular phenotypes were due to Slurp1 deficiency, because we found that the targeted Slurp1 mutation reduced the expression of several neighboring genes (e.g., Slurp2, Lypd2). We therefore created a new line of knockout mice (Slurp1X(-/-) mice) with a simple nonsense mutation in exon 2. The Slurp1X mutation did not reduce the expression of adjacent genes, but Slurp1X(-/-) mice exhibited all of the phenotypes observed in the original line of knockout mice. Thus, Slurp1 deficiency in mice elicits metabolic and neuromuscular abnormalities in addition to PPK
Recommended from our members
Feasibility Evaluation and Retrofit Plan for Cold Crucible Induction Melter Deployment in the Defense Waste Processing Facility at Savannah River Site 8118
Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and increase heat transfer to the slurry fed High Level Waste (HLW) sludge, the CCIM may be equipped with bubblers and/or water cooled mechanical agitators. The DWPF could benefit from use of CCIM technology, especially in light of our latest projections of waste volume to be vitrified. Increased waste loading and increased throughput could result in substantial life cycle cost reduction. In order to significantly surpass the waste throughput capability of the currently installed JHM, it may be necessary to install two 950 mm CCIMs in the DWPF Melt Cell. A cursory evaluation of system design requirements and modifications to the facility that may be required to support installation and operation of two 950 mm CCIMs was performed. Based on this evaluation, it appears technically feasible to position two CCIMs in the Melt Cell of the DWPF within the existing footprint of the current melter. Interfaces with support systems and controls including Melter Feed, Power, Melter Cooling Water, Melter Off-gas, and Canister Operations must be designed to support dual CCIM operations. This paper describes the CCIM technology and identifies technical challenges that must be addressed in order to implement CCIMs in the DWPF
The sociology of disability and the struggle for inclusive education
This article charts the emergence of the sociology of disability and examines the areas of contestation. These have involved a series of erasures – of the body from debates on the social model of disability, of the Other from educational policies and practices, and of academics from political discourses and action. The paper considers the contribution of the sociology of disability to inclusive education and examines some of the objections currently being voiced. It ends with some reflections on the possibilities for academics within the sociology of disability to pursue alternative forms of engagement and outlines a series of duties that they might undertake
The Essential Role for Laboratory Studies in Atmospheric Chemistry
Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines
The Essential Role for Laboratory Studies in Atmospheric Chemistry
Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines
A programme theory for liaison mental health services in England
Background:
Mechanisms by which liaison mental health services (LMHS) may bring about improved patient and organisational outcomes are poorly understood. A small number of logic models have been developed, but they fail to capture the complexity of clinical practice.
Method:
We synthesised data from a variety of sources including a large national survey, 73 in-depth interviews with acute and liaison staff working in hospitals with different types of liaison mental health services, and relevant local, national and international literature. We generated logic models for two common performance indicators used to assess organisational outcomes for LMHS: response times in the emergency department and hospital length of stay for people with mental health problems.
Results:
We identified 8 areas of complexity that influence performance, and 6 trade-offs which drove the models in different directions depending upon the balance of the trade-off. The logic models we developed could only be captured by consideration of more than one pass through the system, the complexity in which they operated, and the trade-offs that occurred.
Conclusions:
Our findings are important for commissioners of liaison services. Reliance on simple target setting may result in services that are unbalanced and not patient-centred. Targets need to be reviewed on a regular basis, together with other data that reflect the wider impact of the service, and any external changes in the system that affect the performance of LMHS, which are beyond their control
- …