148 research outputs found

    An Allometric Analysis of Ontogenetic Changes (Variation) in the Cranial Morphology of Larvae of Hydaticus bimarginatus (Say) (Coleoptera: Dytiscidae: Dytiscinae)

    Get PDF
    Distortion coordinates (Cartesian transformations) are used to compare the ontogenetic allometry in cranial morphology of first, second, and third instars of Hydaticus bimarginatus (Say). The most significant difference in the dorsoventral view is the expansion of the posterior lateral margins. Cranial expansion is likely due to an increase in the mass of the adductor muscles which are responsible for closing the mandibles. The ontogenetic shift in head orientation to a more subprognathic position evident in the analysis of lateral silhouettes indicates that second and third instars may be adapted to feeding on substrate associated prey. These differences are thought to reflect possible changes in prey regimes and habitat preference occurring during larval development

    Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs

    Get PDF
    Low-frequency ultrasound presents an attractive method for transdermal drug delivery. The controlled, yet non-specific nature of enhancement broadens the range of therapeutics that can be delivered, while minimizing necessary reformulation efforts for differing compounds. Long and inconsistent treatment times, however, have partially limited the attractiveness of this method. Building on recent advances made in this area, the simultaneous use of low- and high-frequency ultrasound is explored in a physiologically relevant experimental setup to enable the translation of this treatment to testing in vivo. Dual-frequency ultrasound, utilizing 20 kHz and 1 MHz wavelengths simultaneously, was found to significantly enhance the size of localized transport regions (LTRs) in both in vitro and in vivo models while decreasing the necessary treatment time compared to 20 kHz alone. Additionally, LTRs generated by treatment with 20 kHz + 1 MHz were found to be more permeable than those generated with 20 kHz alone. This was further corroborated with pore-size estimates utilizing hindered-transport theory, in which the pores in skin treated with 20 kHz + 1 MHz were calculated to be significantly larger than the pores in skin treated with 20 kHz alone. This demonstrates for the first time that LTRs generated with 20 kHz + 1 MHz are also more permeable than those generated with 20 kHz alone, which could broaden the range of therapeutics and doses administered transdermally. With regard to safety, treatment with 20 kHz + 1 MHz both in vitro and in vivo appeared to result in no greater skin disruption than that observed in skin treated with 20 kHz alone, an FDA-approved modality. This study demonstrates that dual-frequency ultrasound is more efficient and effective than single-frequency ultrasound and is well-tolerated in vivo.National Institutes of Health (U.S.) (Grant EB-00351)National Institutes of Health (U.S.) (Grant CA014051

    Umbilical cord blood metabolome differs in relation to delivery mode, birth order and sex, maternal diet and possibly future allergy development in rural children

    Get PDF
    Allergy is one of the most common diseases among young children yet all factors that affect development of allergy remain unclear. In a small cohort of 65 children living in the same rural area of south-west Sweden, we have previously found that maternal factors, including prenatal diet, affect childhood allergy risk, suggesting that in utero conditions may be important for allergy development. Here, we studied if metabolites in the umbilical cord blood of newborns may be related to development of childhood allergy, accounting for key perinatal factors such as mode of delivery, birth order and sex. Available umbilical cord blood plasma samples from 44 of the participants were analysed using gas chromatography-mass spectrometry metabolomics; allergy was diagnosed by specialised paediatricians at ages 18 months, 3 years and 8 years and included eczema, asthma, food allergy and allergic rhinoconjunctivitis. Nineteen cord blood metabolites were related to future allergy diagnosis though there was no clear pattern of up- or downregulation of metabolic pathways. In contrast, perinatal factors birth order, sex and mode of delivery affected several energy and bio-synthetic pathways, including glutamate and aspartic acid—histidine metabolism (p = 0.004) and the tricarboxylic acid cycle (p = 0.006) for birth order; branched chain amino acid metabolism (p = 0.0009) and vitamin B6 metabolism (p = 0.01) for sex; and glyoxylate and dicarboxylic acid metabolism (p = 0.005) for mode of delivery. Maternal diet was also related to some of the metabolites associated with allergy. In conclusion, the cord blood metabolome includes individual metabolites that reflect lifestyle, microbial and other factors that may be associated with future allergy diagnosis, and also reflects temporally close events/factors. Larger studies are required to confirm these associations, and perinatal factors such as birth order or siblings must be considered in future cord-blood metabolome studies

    Physiologic Status Monitoring via the Gastrointestinal Tract

    Get PDF
    Reliable, real-time heart and respiratory rates are key vital signs used in evaluating the physiological status in many clinical and non-clinical settings. Measuring these vital signs generally requires superficial attachment of physically or logistically obtrusive sensors to subjects that may result in skin irritation or adversely influence subject performance. Given the broad acceptance of ingestible electronics, we developed an approach that enables vital sign monitoring internally from the gastrointestinal tract. Here we report initial proof-of-concept large animal (porcine) experiments and a robust processing algorithm that demonstrates the feasibility of this approach. Implementing vital sign monitoring as a stand-alone technology or in conjunction with other ingestible devices has the capacity to significantly aid telemedicine, optimize performance monitoring of athletes, military service members, and first-responders, as well as provide a facile method for rapid clinical evaluation and triage.United States. Dept. of the Air Force (Air Force Contract FA8721-05-C-0002)United States. Dept. of Defense. Assistant Secretary of Defense for Research & EngineeringNational Institutes of Health (U.S.) (Grant EB000244)National Institutes of Health (U.S.) (Grant T32DK7191-38-S1

    Ultrasound-mediated gastrointestinal drug delivery

    Get PDF
    available in PMC 2016 April 08There is a significant clinical need for rapid and efficient delivery of drugs directly to the site of diseased tissues for the treatment of gastrointestinal (GI) pathologies, in particular, Crohn’s and ulcerative colitis. However, complex therapeutic molecules cannot easily be delivered through the GI tract because of physiologic and structural barriers. We report the use of ultrasound as a modality for enhanced drug delivery to the GI tract, with an emphasis on rectal delivery. Ultrasound increased the absorption of model therapeutics inulin, hydrocortisone, and mesalamine two- to tenfold in ex vivo tissue, depending on location in the GI tract. In pigs, ultrasound induced transient cavitation with negligible heating, leading to an order of magnitude enhancement in the delivery of mesalamine, as well as successful systemic delivery of a macromolecule, insulin, with the expected hypoglycemic response. In a rodent model of chemically induced acute colitis, the addition of ultrasound to a daily mesalamine enema (compared to enema alone) resulted in superior clinical and histological scores of disease activity. In both animal models, ultrasound treatment was well tolerated and resulted in minimal tissue disruption, and in mice, there was no significant effect on histology, fecal score, or tissue inflammatory cytokine levels. The use of ultrasound to enhance GI drug delivery is safe in animals and could augment the efficacy of GI therapies and broaden the scope of agents that could be delivered locally and systemically through the GI tract for chronic conditions such as inflammatory bowel disease.United States. National Institutes of Health (EB-00351)United States. National Institutes of Health (EB-000244)United States. National Institutes of Health (CA014051)United States. National Institutes of Health (T32-DK007191-38-S1

    Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Get PDF
    The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable

    Pre-formulation and delivery strategies for the development of bacteriocins as next generation antibiotics

    Get PDF
    peer-reviewedBacteriocins, a class of antimicrobial peptide produced by bacteria, may offer a potential alternative to traditional antibiotics, an important step towards mitigating the ever increasing antimicrobial resistance crisis. They are active against a range of clinically relevant Gram-positive and Gram-negative bacteria. Bacteriocins have been discussed in the literature for over a century. Although they are used as preservatives in food, no medicine based on their antimicrobial activity exists on the market today. In order to formulate them into clinical antibiotics, pre-formulation studies on their biophysical and physicochemical properties that will influence their activity in vivo and their stability during manufacture must be elucidated. Thermal, pH and enzymatic stability of bacteriocins are commonly studied and regularly reported in the literature. Solubility, permeability and aggregation properties on the other hand are less frequently reported for many bacteriocins, which may contribute to their poor clinical progression. Promising cytotoxicity studies report that bacteriocins exhibit few cytotoxic effects on a variety of mammalian cell lines, at active concentrations. This review highlights the lack of quantitative data and in many cases even qualitative data, on bacteriocins’ solubility, stability, aggregation, permeability and cytotoxicity. The formulation strategies that have been explored to date, proposed routes of administration, trends in in vitro/in vivo behaviour and efforts in clinical development are discussed. The future promise of bacteriocins as a new generation of antibiotics may require tailored local delivery strategies to fulfil their potential as a force to combat antimicrobial-resistant bacterial infections
    • …
    corecore