47 research outputs found

    Paternal age explains a major portion of de novo germline mutation rate variability in healthy individuals

    Get PDF
    De novo mutations (DNM) are an important source of rare variants and are increasingly being linked to the development of many diseases. Recently, the paternal age effect has been the focus of a number of studies that attempt to explain the observation that increasing paternal age increases the risk for a number of diseases. Using disease-free familial quartets we show that there is a strong positive correlation between paternal age and germline DNM in healthy subjects. We also observed that germline CNVs do not follow the same trend, suggesting a different mechanism. Finally, we observed that DNM were not evenly distributed across the genome, which adds support to the existence of DNM hotspots

    Pharmacogenomics of the efficacy and safety of Colchicine in COLCOT

    Get PDF
    © 2021 The Authors. Circulation: Genomic and Precision Medicine is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited and is not used for commercial purposes.Background: The randomized, placebo-controlled COLCOT (Colchicine Cardiovascular Outcomes Trial) has shown the benefits of colchicine 0.5 mg daily to lower the rate of ischemic cardiovascular events in patients with a recent myocardial infarction. Here, we conducted a post hoc pharmacogenomic study of COLCOT with the aim to identify genetic predictors of the efficacy and safety of treatment with colchicine. Methods: There were 1522 participants of European ancestry from the COLCOT trial available for the pharmacogenomic study of COLCOT trial. The pharmacogenomic study's primary cardiovascular end point was defined as for the main trial, as time to first occurrence of cardiovascular death, resuscitated cardiac arrest, myocardial infarction, stroke, or urgent hospitalization for angina requiring coronary revascularization. The safety end point was time to the first report of gastrointestinal events. Patients' DNA was genotyped using the Illumina Global Screening array followed by imputation. We performed a genome-wide association study in colchicine-treated patients. Results: None of the genetic variants passed the genome-wide association study significance threshold for the primary cardiovascular end point conducted in 702 patients in the colchicine arm who were compliant to medication. The genome-wide association study for gastrointestinal events was conducted in all 767 patients in the colchicine arm and found 2 significant association signals, one with lead variant rs6916345 (hazard ratio, 1.89 [95% CI, 1.52-2.35], P=7.41×10-9) in a locus which colocalizes with Crohn disease, and one with lead variant rs74795203 (hazard ratio, 2.51 [95% CI, 1.82-3.47]; P=2.70×10-8), an intronic variant in gene SEPHS1. The interaction terms between the genetic variants and treatment with colchicine versus placebo were significant. Conclusions: We found 2 genomic regions associated with gastrointestinal events in patients treated with colchicine. Those findings will benefit from replication to confirm that some patients may have genetic predispositions to lower tolerability of treatment with colchicine.info:eu-repo/semantics/publishedVersio

    A dataset of proteomic changes during human heat stress and heat acclimation

    No full text
    Abstract Hotter climates have important impacts on human health and performance. Yet, the cellular and molecular responses involved in human heat stress and acclimation remain understudied. This dataset includes physiological measurements and the plasma concentration of 2,938 proteins collected from 10 healthy adults, before and during passive heat stress that was performed both prior to and after a 7-day heat acclimation protocol. Physiological measurements included body temperatures, sweat rate, cutaneous vascular conductance, blood pressure, and skin sympathetic nerve activity. The proteomic dataset was generated using the Olink Explore 3072 assay, enabling a high-multiplex antibody-based assessment of protein changes based on proximity extension assay technology. The data need to be interpreted in the context of the moderate level of body hyperthermia attained and the specific demographic of young, healthy adults. We have made this dataset publicly available to facilitate research into the cellular and molecular mechanisms involved in human heat stress and acclimation, crucial for addressing the health and performance challenges posed by rising temperatures

    Genetic meta-analysis of cancer diagnosis following statin use identifies new associations and implicates human leukocyte antigen (HLA) in women

    No full text
    International audienceWe sought to perform a genomic evaluation of the risk of incident cancer in statin users, free of cancer at study entry. Patients who previously participated in two phase IV trials (TNT and IDEAL) with genetic data were used (npooled = 11,196). A GWAS meta-analysis using Cox modeling for the prediction of incident cancer was conducted in the pooled cohort and sex-stratified. rs13210472 (near HLA-DOA gene) was associated with higher risk of incident cancer amongst women with prevalent coronary artery disease (CAD) taking statins (hazard ratio [HR]: 2.66, 95% confidence interval [CI]: 1.88-3.76, P = 3.5 × 10-8). Using the UK Biobank and focusing exclusively on women statin users with CAD (nfemale = 2952), rs13210472 remained significantly associated with incident cancer (HR: 1.71, 95% CI: 1.14-2.56, P = 9.0 × 10-3). The association was not observed in non-statin users. In this genetic meta-analysis, we have identified a variant in women statin users with prevalent CAD that was associated with incident cancer, possibly implicating the human leukocyte antigen pathway

    Methylomic changes in individuals with psychosis, prenatally exposed to endocrine disrupting compounds: Lessons from diethylstilbestrol.

    No full text
    In the Western world, between 1940 and 1970, more than 2 million people were exposed in utero to diethylstilbestrol (DES). In exposed individuals, and in their descendants, adverse outcomes have been linked to such exposure, including cancers, genital malformations, and less consistently, psychiatric disorders. We aimed to explore whether prenatal DES exposure would be associated with DNA methylation changes, and whether these epigenetic modifications would be associated with increased risk of psychosis.From 247 individuals born from mothers exposed to DES, we selected 69 siblings from 30 families. In each family, at least one sibling was exposed in utero to DES. We performed a methylome-wide association study using HumanMethylation450 DNA Analysis BeadChip® in peripheral blood. We analyzed methylation changes at individual CpGs or regions in exposed (n = 37) versus unexposed individuals (n = 32). We also compared exposed individuals with (n = 7) and without psychosis (n = 30).There were more individuals with schizophrenia in the DES-exposed group. We found no significant differences between exposed and unexposed individuals with respect to differentially methylated CpGs or regions. The largest difference was in a region near the promoter of an ADAMTS proteoglycanase gene (ADAMTS9). Compared to exposed individuals without psychosis, exposed individuals with psychosis had differential methylation in the region encompassing the gene encoding the zinc finger protein 57 (ZFP57).In utero exposure to DES was not associated with methylation changes at specific CpG or regions. In exposed individuals, however, psychosis was associated with specific methylomic modifications that could impact neurodevelopment and neuroplasticity
    corecore