585 research outputs found

    KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing

    No full text
    International audienceIn the cochlea, K þ is essential for mechano-electrical transduction. Here, we explore cochlear structure and function in mice lacking K þ channels of the two-pore domain family. A profound deafness associated with a decrease in endocochlear potential is found in adult Kcnk5 À / À mice. Hearing occurs around postnatal day 19 (P19), and completely disappears 2 days later. At P19, Kcnk5 À / À mice have a normal endolymphatic [K þ ] but a partly lowered endocochlear potential. Using Lac-Z as a gene reporter, KCNK5 is mainly found in outer sulcus Claudius', Boettcher's and root cells. Low levels of expression are also seen in the spiral ganglion, Reissner's membrane and stria vascularis. Essential channels (KCNJ10 and KCNQ1) contributing to K þ secretion in stria vascularis have normal expression in Kcnk5 À / À mice. Thus, KCNK5 channels are indispensable for the maintenance of hearing. Among several plausible mechanisms, we emphasize their role in K þ recycling along the outer sulcus lateral route

    Role of TASK2 Potassium Channels Regarding Volume Regulation in Primary Cultures of Mouse Proximal Tubules

    Get PDF
    Several papers reported the role of TASK2 channels in cell volume regulation and regulatory volume decrease (RVD). To check the possibility that the TASK2 channel modulates the RVD process in kidney, we performed primary cultures of proximal convoluted tubules (PCT) and distal convoluted tubules (DCT) from wild-type and TASK2 knockout (KO) mice. In KO mice, the TASK2 coding sequence was in part replaced by the lac-Z gene. This allows for the precise localization of TASK2 in kidney sections using β-galactosidase staining. TASK2 was only localized in PCT cells. K+ currents were analyzed by the whole-cell clamp technique with 125 mM K-gluconate in the pipette and 140 mM Na-gluconate in the bath. In PCT cells from wild-type mice, hypotonicity induced swelling-activated K+ currents insensitive to 1 mM tetraethylammonium, 10 nM charybdotoxin, and 10 μM 293B, but blocked by 500 μM quinidine and 10 μM clofilium. These currents were increased in alkaline pH and decreased in acidic pH. In PCT cells from TASK2 KO, swelling-activated K+ currents were completely impaired. In conclusion, the TASK2 channel is expressed in kidney proximal cells and could be the swelling-activated K+ channel responsible for the cell volume regulation process during osmolyte absorptions in the proximal tubules

    The secreted protein augurin is a novel modulator of canonical Wnt signalling involved in osteoblast differentiation

    Get PDF
    Background ECRG4/C2ORF40 is a tumour suppressor gene downregulated in several cancer types, which encodes the secreted protein augurin. A wide number of functions in health and disease have been assigned to augurin, but the signalling pathways it regulates are still poorly characterized. Augurin expression is strongly upregulated during in vitro differentiation of neonatal mouse osteoblasts. Methods In vitro differentiation assays of calvarial osteoblasts isolated from Ecrg4 -/- and wild-type mice; transient transfection assays using reporters activated by Wnt signalling and other signal transduction pathways; Real-time quantitative polymerase chain reaction for measurement of gene expression; protein expression in Chinese hamster ovary cells and Escherichia coli; in situ binding assays of proteins expressed as fusions to alkaline phosphatase with cells expressing various membrane receptors. Results Osteoblasts from Ecrg4 -/- mice have an accelerated differentiation compared to wild-type and upregulation of Wnt markers. Augurin is a specific repressor of Wnt-stimulated transcriptional activity, both when coexpressed together with the reporter and when added to the culture medium as a soluble protein. We confirmed the previously described binding of augurin to LOX1, a scavenger receptor, but an inhibitor of this molecule did not impair augurin repression of Wnt-stimulated transcription specifically. Genome-wide association studies showed an association of ECRG4 genomic variation with body height and osteoarthritis. Conclusions Our study sheds new light on the wide spectrum of functions previously ascribed to augurin in brain function, stem cell biology, inflammation/immunity and cancer. Furthermore, our discovery paves the way to further characterization of the mechanisms involved in augurin repression of Wnt signalling and the development of agonists and antagonists for this protein, which have a wide array of potential applications in the clinic

    KCNQ1 Haplotypes Associate with Type 2 Diabetes in Malaysian Chinese Subjects

    Get PDF
    The aim of this study was to investigate the association of single nucleotide polymorphisms (SNPs) and haplotypes of potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) with type 2 diabetes (T2D) in Malaysian Chinese subjects. The KCNQ1 SNPs rs2237892, rs2283228 and rs2237895 were genotyped in 300 T2D patients and 230 control subjects without diabetes and metabolic syndrome. Two logistic regression models of analysis were applied, the first adjusted for age and gender while the second adjusted for age, gender and body mass index. The additive genetic analysis showed that adjusting for body mass index (BMI) even strengthened association of rs2237892, rs2283228 and rs2237895 with T2D (OR = 2.0, P = 5.1 × 10−5; OR = 1.9, P = 5.2 × 10−5; OR = 1.9, P = 7.8 × 10−5, respectively). The haplotype TCA containing the allele of rs2237892 (T), rs2283228 (C) and rs2237895 (A) was highly protective against T2D (Second model; OR = 0.17, P = 3.7 × 10−11). The KCNQ1 rs2237892 (TT), and the protective haplotype (TCA) were associated with higher beta-cell function (HOMA-B) in normal subjects (P = 0.0002; 0.014, respectively). This study found that KCNQ1 SNPs was associated with T2D susceptibility in Malaysian Chinese subjects. In addition, certain KCNQ1 haplotypes were strongly associated with T2D

    State-dependent electrostatic interactions of S4 arginines with E1 in S2 during Kv7.1 activation

    Get PDF
    The voltage-sensing domain of voltage-gated channels is comprised of four transmembrane helices (S1–S4), with conserved positively charged residues in S4 moving across the membrane in response to changes in transmembrane voltage. Although it has been shown that positive charges in S4 interact with negative countercharges in S2 and S3 to facilitate protein maturation, how these electrostatic interactions participate in channel gating remains unclear. We studied a mutation in Kv7.1 (also known as KCNQ1 or KvLQT1) channels associated with long QT syndrome (E1K in S2) and found that reversal of the charge at E1 eliminates macroscopic current without inhibiting protein trafficking to the membrane. Pairing E1R with individual charge reversal mutations of arginines in S4 (R1–R4) can restore current, demonstrating that R1–R4 interact with E1. After mutating E1 to cysteine, we probed E1C with charged methanethiosulfonate (MTS) reagents. MTS reagents could not modify E1C in the absence of KCNE1. With KCNE1, (2-sulfonatoethyl) MTS (MTSES)− could modify E1C, but [2-(trimethylammonium)ethyl] MTS (MTSET)+ could not, confirming the presence of a positively charged environment around E1C that allows approach by MTSES− but repels MTSET+. We could change the local electrostatic environment of E1C by making charge reversal and/or neutralization mutations of R1 and R4, such that MTSET+ modified these constructs depending on activation states of the voltage sensor. Our results confirm the interaction between E1 and the fourth arginine in S4 (R4) predicted from open-state crystal structures of Kv channels and reveal an E1–R1 interaction in the resting state. Thus, E1 engages in electrostatic interactions with arginines in S4 sequentially during the gating movement of S4. These electrostatic interactions contribute energetically to voltage-dependent gating and are important in setting the limits for S4 movement

    Identification of a protein–protein interaction between KCNE1 and the activation gate machinery of KCNQ1

    Get PDF
    KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K+ channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been described. Here, we identified a protein–protein interaction between the KCNE1 C-terminal domain and the KCNQ1 S6 activation gate and S4–S5 linker. Using cysteine cross-linking, we biochemically screened over 300 cysteine pairs in the KCNQ1–KCNE1 complex and identified three residues in KCNQ1 (H363C, P369C, and I257C) that formed disulfide bonds with cysteine residues in the KCNE1 C-terminal domain. Statistical analysis of cross-link efficiency showed that H363C preferentially reacted with KCNE1 residues H73C, S74C, and D76C, whereas P369C showed preference for only D76C. Electrophysiological investigation of the mutant K+ channel complexes revealed that the KCNQ1 residue, H363C, formed cross-links not only with KCNE1 subunits, but also with neighboring KCNQ1 subunits in the complex. Cross-link formation involving the H363C residue was state dependent, primarily occurring when the KCNQ1–KCNE1 complex was closed. Based on these biochemical and electrophysiological data, we generated a closed-state model of the KCNQ1–KCNE1 cytoplasmic region where these protein–protein interactions are poised to slow activation gate opening
    corecore