496 research outputs found

    MINOS and CPT-violating neutrinos

    Get PDF
    We review the status of CPT violation in the neutrino sector. Apart from LSND, current data favors three flavors of light stable neutrinos and antineutrinos, with both halves of the spectrum having one smaller mass splitting and one larger mass splitting. Oscillation data for the smaller splitting is consistent with CPT. For the larger splitting, current data favor an antineutrino mass-squared splitting that is an order of magnitude larger than the corresponding neutrino splitting, with the corresponding mixing angle less-than-maximal. This CPT-violating spectrum is driven by recent results from MINOS, but is consistent with other experiments if we ignore LSND. We describe an analysis technique which, together with MINOS running optimized for muon antineutrinos, should be able to conclusively confirm the CPT-violating spectrum proposed here, with as little as three times the current data set. If confirmed, the CPT-violating neutrino mass-squared difference would be an order of magnitude less than the current most-stringent upper bound on CPT violation for quarks and charged leptons.Comment: 18 pages, title change, version to appear in Physical Review

    METing SUSY on the Z peak

    Full text link
    Recently the ATLAS experiment announced a 3 σ\sigma excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, ETmiss>225E_T^{\rm miss}> 225 GeV and HT≥600H_T \geq 600 GeV, to be compared with 10.6±3.210.6 \pm 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, mg~≲1.2m_{\tilde g} \lesssim 1.2 TeV, together with a heavy neutralino NLSP of mχ~≳400m_{\tilde \chi} \gtrsim 400 GeV decaying predominantly to Z-boson plus a light gravitino, such that nearly every gluino produces at least one Z-boson in its decay chain, could reproduce the excess. We construct an explicit general gauge mediation model able to reproduce the observed signal overcoming all the experimental limits. Needless to say, more sophisticated models could also reproduce the signal, however, any model would have to exhibit the following features, light gluinos, or heavy particles with a strong production cross-section, producing at least one Z-boson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the Z peak, as well as for the direct search of gluinos and other SUSY particles, are pointed out.Comment: 24 pages, 17 figures, simulation improved, Checkmate analysis added, new benchmark point included. Typos corrected, conclusions unchange

    Baryogenesis from a right-handed neutrino condensate

    Get PDF
    We show that the baryon asymmetry of the Universe can be generated by a strongly coupled right handed neutrino condensate which also drives inflation. The resulting model has only a small number of parameters, which completely determine not only the baryon asymmetry of the Universe and the mass of the right handed neutrino but also the inflationary phase. This feature allows us to make predictions that will be tested by current and planned experiments. As compared to the usual approach our dynamical framework is both economical and predictive.Comment: 13 pages, 3 figures. Typos corrected and several points clarified. Results unchanged. New references adde

    CPT Violation Implies Violation of Lorentz Invariance

    Get PDF
    An interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.Comment: Minor changes in the published versio

    Quantum decoherence and neutrino data

    Get PDF
    In this work we perform global fits of microscopic decoherence models of neutrinos to all available current data, including LSND and KamLAND spectral distortion results. In previous works on related issues the models used were supposed to explain LSND results by means of quantum gravity induced decoherence. However those models were purely phenomenological without any underlying microscopic basis. It is one of the main purposes of this article to use detailed microscopic decoherence models with complete positivity, to fit the data.The decoherence in these models has contributions not only from stochastic quantum gravity vacua operating as a medium, but also from conventional uncertainties in the energy of the (anti)neutrino beam. All these contributions lead to oscillation-length independent damping factors modulating the oscillatory terms from which one obtains an excellent fit to all available neutrino data, including LSND and Kamland spectral distortion.Comment: 27 pages, 2 figure

    Self-accelerating solutions of scalar-tensor gravity

    Get PDF
    Scalar-tensor gravity is the simplest and best understood modification of general relativity, consisting of a real scalar field coupled directly to the Ricci scalar curvature. Models of this type have self-accelerating solutions. In an example inspired by string dilaton couplings, scalar-tensor gravity coupled to ordinary matter exhibits a de Sitter type expansion, even in the presence of a {\it negative} cosmological constant whose magnitude exceeds that of the matter density. This unusual behavior does not require phantoms, ghosts or other exotic sources. More generally, we show that any expansion history can be interpreted as arising partly or entirely from scalar-tensor gravity. To distinguish any quintessence or inflation model from its scalar-tensor variants, we use the fact that scalar-tensor models imply deviations of the post-Newtonian parameters of general relativity, and time variation of the Newton's gravitational coupling GG. We emphasize that next-generation probes of modified GR and the time variation of GG are an essential complement to dark energy probes based on luminosity-distance measurements.Comment: 14 pages, 3 figure

    Constraining Models of New Physics in Light of Recent Experimental Results on aψKSa_{\psi K_S}

    Get PDF
    We study extensions of the Standard Model where the charged current weak interactions are governed by the CKM matrix and where all tree-level decays are dominated by their Standard Model contribution. We constrain both analytically and numerically the ratio and the phase difference between the New Physics and the Standard Model contributions to the mixing amplitude of the neutral BB system using the experimental results on RuR_u, Δmd,s\Delta m_{d,s}, ϵK\epsilon_K and aψKSa_{\psi K_S}. We present new results concerning models with minimal flavor violation and update the relevant parameter space. We also study the left-right symmetric model with spontaneously broken CP, probing the viability of this model in view of the recent results for aψKSa_{\psi K_S} and other observables.Comment: 32 pages, including 9 figures, typos and error in fig. 1 corrected, minor modificiation in the text, conclusions unchanged, to appear in PR

    Gravity triggered neutrino condensates

    Get PDF
    In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right handed neutrino at a scale appropriate for the see-saw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful see-saw scenario.Comment: 16 pages, 10 figure

    Are the New Physics Contributions from the Left-Right Symmetric Model Important for the Indirect CP Violation in the Neutral B Mesons?

    Full text link
    Several works analyzing the new physics contributions from the Left-Right Symmetric Model to the CP violation phenomena in the neutral B mesons can be found in the literature. These works exhibit interesting and experimentally sensible deviations from the Standard Model predictions but at the expense of considering a low right scale \upsilon_R around 1 TeV. However, when we stick to the more conservative estimates for \upsilon_R which say that it must be at least 10^7 GeV, no experimentally sensible deviations from the Standard Model appear for indirect CP violation. This estimate for \upsilon_R arises when the generation of neutrino masses is considered. In spite of the fact that this scenario is much less interesting and says nothing new about both the CP violation phenomenon and the structure of the Left-Right Symmetric Model, this possibility must be taken into account for the sake of completeness and when considering the see-saw mechanism that provides masses to the neutrino sector.Comment: LaTex file. 19 pages, 4 figures. Change in the way the paper address the problem. As a result, change in title, abstract, and some sections. Conclusions unchanged. Version to appear in Foundations of Physics Letter

    On Neutrino Masses and a Low Breaking Scale of Left-Right Symmetry

    Full text link
    In left-right symmetric models (LRSM) the light neutrino masses arise from two sources: the seesaw mechanism and a VEV of an SU(2)L_L triplet. If the left-right symmetry breaking, vRv_R, is low, v_R\lsim15\TeV, the contributions to the light neutrino masses from both the seesaw mechanism and the triplet Yukawa couplings are expected to be well above the experimental bounds. We present a minimal LRSM with an additional U(1) symmetry in which the masses induced by the two sources are below the eV scale and the two-fold problem is solved. We further show that, if the U(1) symmetry is also responsible for the lepton flavor structure, the model yields a small mixing angle within the first two lepton generations.Comment: 18 pages references added published versio
    • …
    corecore