36 research outputs found

    Current-induced magnetic superstructures in exchange-spring devices

    Get PDF
    We investigate the potential to use a magneto-thermo-electric instability that may be induced in a mesoscopic magnetic multi-layer (F/f/F) to create and control magnetic superstructures. In the studied multilayer two strongly ferromagnetic layers (F) are coupled through a weakly ferromagnetic spacer (f) by an "exchange spring" with a temperature dependent "spring constant" that can be varied by Joule heating caused by an electrical dc current. We show that in the current-in-plane (CIP) configuration a distribution of the magnetization, which is homogeneous in the direction of the current flow, is unstable in the presence of an external magnetic field if the length L of the sample in this direction exceeds some critical value Lc ~ 10 \mu m. This spatial instability results in the spontaneous formation of a moving domain of magnetization directions, the length of which can be controlled by the bias voltage in the limit L >> Lc. Furthermore, we show that in such a situation the current-voltage characteristics has a plateau with hysteresis loops at its ends and demonstrate that if biased in the plateau region the studied device functions as an exponentially precise current stabilizer.Comment: 8 pages, 6 figure

    Breathing Current Domains in Globally Coupled Electrochemical Systems: A Comparison with a Semiconductor Model

    Full text link
    Spatio-temporal bifurcations and complex dynamics in globally coupled intrinsically bistable electrochemical systems with an S-shaped current-voltage characteristic under galvanostatic control are studied theoretically on a one-dimensional domain. The results are compared with the dynamics and the bifurcation scenarios occurring in a closely related model which describes pattern formation in semiconductors. Under galvanostatic control both systems are unstable with respect to the formation of stationary large amplitude current domains. The current domains as well as the homogeneous steady state exhibit oscillatory instabilities for slow dynamics of the potential drop across the double layer, or across the semiconductor device, respectively. The interplay of the different instabilities leads to complex spatio-temporal behavior. We find breathing current domains and chaotic spatio-temporal dynamics in the electrochemical system. Comparing these findings with the results obtained earlier for the semiconductor system, we outline bifurcation scenarios leading to complex dynamics in globally coupled bistable systems with subcritical spatial bifurcations.Comment: 13 pages, 11 figures, 70 references, RevTex4 accepted by PRE http://pre.aps.or

    Non-linear dynamics: Oscillatory kinetics and spatio-temporal pattern formation

    Get PDF

    Pattern formation outside of equilibrium

    Full text link

    Detonation type waves in phase (chemical) transformation processes in condensed matter

    No full text
    Fast self sustained waves (autowaves) associated with chemical or phase transformations are observed in many situations in condensed matter. They are governed neither by diffusion of matter or heat (as in combustion processes) nor by a travelling shock wave (as in gaseous detonation). Instead, they result from a coupling between phase transformation and the stress field, and may be classified as gasless detonation autowaves in solids. We propose a simple model to describe these regimes. The model rests on the classical equations of elastic deformations in a 1-dimensional solid bar, with the extra assumption that the phase (chemical) transformation induces a change of the sound velocity. The transformations are assumed to occur through a chain branched mechanism, which starts when the mechanical stress exceeds a given threshold. Our investigation shows that supersonic autowaves exist in this model. In the absence of diffusion (dissipation factor, losses), a continuum of travelling wave solutions is found. In the presence of diffusion, a steady state supersonic wave solution is found, along with a slower wave controlled by diffusion
    corecore