362 research outputs found

    Caught in the act: Implications for the increasing abundance of mafic enclaves during the eruption of the Soufriere Hills Volcano, Montserrat

    Get PDF
    An exceptional opportunity to sample several large blocks sourced from the same region of the growing Soufrière Hills lava dome has documented a significant increase in the presence of mafic enclaves in the host andesite during the course of a long-lived eruptive episode with several phases. In 1997 (Phase I) mafic inclusions comprised ~1 volume percent of erupted material; in 2007 (Phase III) deposits their volumetric abundance increased to 5–7 percent. A broader range of geochemically distinctive types occurs amongst the 2007 enclaves. Crystal-poor enclaves generally have the least evolved (basaltic) compositions; porphyritic enclaves represent compositions intermediate between basaltic and andesitic compositions. The absence of porphyritic enclaves prior to Phase III magmatism at Soufrière Hills Volcano suggests that a mixing event occurred during the course of the current eruptive episode, providing direct evidence consistent with geophysical observations that the system is continuously re-invigorated from depth

    Petrological and geochemical variation during the Soufrière Hills eruption, 1995 to 2010

    Get PDF
    The andesite lava erupted at the Soufrière Hills Volcano (SHV) is crystal-rich with 33–63% phenocrysts of plagioclase (65%), amphibole (28%), orthopyroxene (7%), and minor Fe–Ti oxide and clinopyroxene microphenocrysts. The andesite hosts mafic enclaves that have similar mineral phases to the andesite. The enclaves are generally crystal-poor but can have up to 27% of inherited phenocrysts from the andesite, the majority of which are plagioclase. The eruption is defined by discrete periods of extrusion called phases, separated by pauses. The enclaves exhibit bulk geochemical trends that are consistent with fractionation. We infer that the intruded mafic liquids of Phases I and II interacted and assimilated plutonic residue remaining from the multiple prior mafic intrusions, while the basaltic liquids from Phases III and V assimilated relatively little material. We also infer a change in the basaltic composition coming from depth. The bulk Fe contents of both magma types are coupled and they both show a systematic interphase variation in Fe content. We interpret the coupled Fe variation to be due to contamination of the andesite from the intruding basalt via diffusion and advection processes, resulting in the erupted andesite products bearing the geochemical imprint of the syn-eruptive enclaves

    House time: Neolithic settlement development at Racot during the 5th millennium cal b.c. in the Polish lowlands

    Get PDF
    The settlement of Racot 18 in the western Polish lowlands is used as a case study in the investigation of continued development and expansion following initial Neolithic beginnings, and in the formal chronological modelling, in a Bayesian framework, of settlement development. The site belongs to the Late Lengyel culture of the later fifth millennium cal BC, and represents the intake of new land following earlier initial colonisation. The formally estimated chronology for the settlement suggests spans for individual house biographies from as little as a generation to over a century; distinctive substantial buildings, from late in the sequence, may have lasted longest. Racot 18 is compared to its formally modelled context of the later fifth millennium cal BC

    Accurate Assignments of Excited-State Resonance Raman Spectra: A Benchmark Study Combining Experiment and Theory

    Get PDF
    This is an unofficial translation of an article that appeared in an ACS publication. ACS has not endorsed the content of this translation or the context of its use.Femtosecond stimulated Raman scattering (FSRS) probes the structural dynamics of molecules in electronically excited states by following the evolution of the vibrational spectrum. Interpreting the dynamics requires accurate assignments to connect the vibrational bands with specific nuclear motions of an excited molecule. However, the assignment of FSRS signals is often complicated by mode-specific resonance enhancement effects that are difficult to calculate for molecules in electronically excited states. We present benchmark results for a series of eight aryl-substituted thiophene derivatives to show that calculated off-resonance Raman spectra can be used to assign experimental bands on the basis of a comparison of structurally similar compounds and careful consideration of the resonance condition. Importantly, we show that direct comparison with the off-resonant calculations can lead to incorrect assignments of the experimental spectrum if the resonance condition is neglected. These results highlight the importance of resonance enhancement effects in assigning FSRS spectra

    Zircon as a tracer of plumbing processes in an active magmatic system: insights from mingled magmas of the 2010 dome collapse, Montserrat, Lesser Antilles Arc, Caribbean

    Get PDF
    This project has received funding from the European Union's Hori-zon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No. 749611 (JHS) . We also ac-knowledge funding from the Natural Environment Research Council Isotope Geoscience Facilities Steering Committee, grant IP-1746-1117 (JB) . The work has been financially supported by the Spanish grant CGL 2017-84469-P (JHS) . Funding for open access charge: Universidad de Granada/CBUA. Alexander Varychev at the University of Heidelberg, Germany, and Jeremy Rushton at the British Geological Survey, U.K., are thanked for help with analytical work. Jose Luis Macias is thanked for editorial handling. We are obliged to two anonymous reviewers for the time and effort they took to help us improve the clarity and rigour of our interpretations. 19Soufriere Hills Volcano, Montserrat, erupted from 1995 to 2010, with activity including dome growth, destructive pyroclastic density currents and Vulcanian explosions. Monitoring data, such as gas emissions, show the system is still in a state of unrest. The recent eruptions provide an opportunity to study, in real time, a complex subduction-related subvolcanic transaustal melt-mush reservoir, its magma fluxes, and the timing of crystal and melt storage prior to eruptive paroxysms. How and when mush destabilisation occurs prior to volcanic eruptions continues to be a question of intense debate. Evidence of mafic magma intrusion, a potential eruptive trigger, is preserved in enclaves with quenched and diffuse margins that are mingled with crystal-rich andesite. Here, in this first study of Soufriere Hills Volcano zircon, we report zircon ages and compositions for mafic-intermediate enclaves and host andesites from the most recent dome collapse in 2010 to place temporal constraints on magma reservoir processes. Zircon U-238-Th-230 ages disequilibrium crystallisation ages ranging between c. 2-250 ka constrain the longevity of the magmatic plumbing system. Uniform Hf isotopes, epsilon Hf 11.3 +/- 12 to 14.6 +/- 1.5, indicate invariant compositions that are typical for island arc magma sources. Zircon trace element concentrations and Ti-in-zircon crystallisation temperatures indicate crystallisation in isolated, small-volume, lenses with variable fractions of melt of heterogeneous compositions. We suggest amalgamation of assorted crystal cargoes from these lenses occurred prior to eruption during mush destabilisation triggered by mafic magma recharge. Zircon textures, on the other hand, shed light on recent centimetre-scale magma mingling immediately prior to eruption. Euhedral-subhedral zircon is preferentially preserved in or near quenched contacts of the least-evolved enclave and host andesite. By contrast, reheating of the andesite by the mafic magma recharge in the presence of zircon-undersaturated melts promoted zircon resorption. This led to the formation of subhedral-anhedral corroded zircon that is typical in the host andesite mush. Zircon thus reveals processes ranging from 100,000s of years of andesite storage to short-term partial destruction in response to transient heating and magma mixing events.European Commission 749611Natural Environment Research Council Isotope Geoscience Facilities Steering Committee IP-1746-1117Spanish Government CGL 2017-84469-PUniversidad de Granada/CBU

    Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces

    Get PDF
    We demonstrate a new type of optomechanical system employing a movable, micron-scale waveguide evanescently-coupled to a high-Q optical microresonator. Micron-scale displacements of the waveguide are observed for milliwatt(mW)-level optical input powers. Measurement of the spatial variation of the force on the waveguide indicates that it arises from a cavity-enhanced optical dipole force due to the stored optical field of the resonator. This force is used to realize an all-optical tunable filter operating with sub-mW control power. A theoretical model of the system shows the maximum achievable force to be independent of the intrinsic Q of the optical resonator and to scale inversely with the cavity mode volume, suggesting that such forces may become even more effective as devices approach the nanoscale.Comment: 4 pages, 5 figures. High resolution version available at (http://copilot.caltech.edu/publications/CEODF_hires.pdf). For associated movie, see (http://copilot.caltech.edu/research/optical_forces/index.htm

    Genetic Influences on Educational Achievement in Cross-National Perspective

    Get PDF
    There is a growing interest in how social conditions moderate genetic influences on education [gene–environment interactions (GxE)]. Previous research has focused on the family, specifically parents’ social background, and has neglected the institutional environment. To assess the impact of macro-level influences, we compare genetic influences on educational achievement and their social stratification across Germany, Norway, Sweden, and the United States. We combine well-established GxE-conceptualizations with the comparative stratification literature and propose that educational systems and welfare-state regimes affect the realization of genetic potential. We analyse population-representative survey data on twins (Germany and the United States) and twin registers (Norway and Sweden), and estimate genetically sensitive variance decomposition models. Our comparative design yields three main findings. First, Germany stands out with comparatively weak genetic influences on educational achievement suggesting that early tracking limits the realization thereof. Second, in the United States genetic influences are comparatively strong and similar in size compared to the Nordic countries. Third, in Sweden genetic influences are stronger among disadvantaged families supporting the expectation that challenging and uncertain circumstances promote genetic expression. This ideosyncratic finding must be related to features of Swedish social institutions or welfare-state arrangements that are not found in otherwise similar countries

    Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample

    Get PDF
    We measure planet occurrence rates using the planet candidates discovered by the Q1-Q16 Kepler pipeline search. This study examines planet occurrence rates for the Kepler GK dwarf target sample for planet radii, 0.75<Rp<2.5 Rearth, and orbital periods, 50<Porb<300 days, with an emphasis on a thorough exploration and identification of the most important sources of systematic uncertainties. Integrating over this parameter space, we measure an occurrence rate of F=0.77 planets per star, with an allowed range of 0.3<F<1.9. The allowed range takes into account both statistical and systematic uncertainties, and values of F beyond the allowed range are significantly in disagreement with our analysis. We generally find higher planet occurrence rates and a steeper increase in planet occurrence rates towards small planets than previous studies of the Kepler GK dwarf sample. Through extrapolation, we find that the one year orbital period terrestrial planet occurrence rate, zeta_1=0.1, with an allowed range of 0.01<zeta_1<2, where zeta_1 is defined as the number of planets per star within 20% of the Rp and Porb of Earth. For G dwarf hosts, the zeta_1 parameter space is a subset of the larger eta_earth parameter space, thus zeta_1 places a lower limit on eta_earth for G dwarf hosts. From our analysis, we identify the leading sources of systematics impacting Kepler occurrence rate determinations as: reliability of the planet candidate sample, planet radii, pipeline completeness, and stellar parameters.Comment: 19 Pages, 17 Figures, Submitted ApJ. Python source to support Kepler pipeline completeness estimates available at http://github.com/christopherburke/KeplerPORTs
    corecore