10 research outputs found

    Zoonotic Abbreviata caucasica in wild chimpanzees (Pan troglodytes verus) from Senegal

    Get PDF
    Abbreviata caucasica (syn. Physaloptera mordens) has been reported in human and various non-human primates including great apes. The identification of this nematode is seldom performed and relies on egg characterization at the coproscopy, in the absence of any molecular tool. Following the recovery of two adult females of A. caucasica from the feces of wild Senegalese chimpanzees, morphometric characteristics were reported and new data on the width of the esophagus (0.268-0.287 mm) and on the cuticle structure (0.70-0.122 mm) were provided. The molecular characterization of a set of mitochondrial (cox1, 16S rRNA, 12S rRNA) and nuclear (18S rRNA and ITS2) partial genes was performed. Our phylogenetic analysis indicates for the first time that A. caucasica is monophyletic with Physaloptera species. A novel molecular tool was developed for the routine diagnosis of A. caucasica and the surveillance of Nematoda infestations. An A. caucasica-specific qPCR targeting the 12S gene was assessed. The assay was able to detect up to 1.13 × 10−3 eggs/g of fecal matter irrespective of its consistency, with an efficiency of 101.8% and a perfect adjustment (R2 = 0.99). The infection rate by A. caucasica in the chimpanzee fecal samples was 52.08%. Only 6.19% of the environmental samples were positive for nematode DNA and any for A. caucasica. Our findings indicate the need for further studies to clarify the epidemiology, circulation, life cycle, and possible pathological effects of this infestation using the molecular tool herein developed

    Parasitic infections in african humans and non-human primates

    Get PDF
    Different protozoa and metazoa have been detected in great apes, monkeys and humans with possible interspecies exchanges. Some are either nonpathogenic or their detrimental effects on the host are not yet known. Others lead to serious diseases that can even be fatal. Their survey remains of great importance for public health and animal conservation. Fecal samples from gorillas (Gorilla gorilla) and humans living in same area in the Republic of Congo, chimpanzees (Pan troglodytes) from Senegal and one other from the Republic of Congo, Guinea baboons (Papio papio) from Senegal, hamadryas baboons (Papio hamadryas) from Djibouti and Barbary macaques (Macaca sylvanus) from Algeria, were collected. DNA was extracted and screened using specific qPCR assays for the presence of a large number of helminths and protozoa. Positive samples were then amplified in standard PCRs and sequenced when possible. Overall, infection rate was 36.5% in all non-human primates (NHPs) and 31.6% in humans. Great apes were more often infected (63.6%) than monkeys (7.3%). At least twelve parasite species, including ten nematodes and two protozoa were discovered in NHPs and five species, including four nematodes and a protozoan in humans. The prevalences of Giarida lamblia, Necator americanus, Enterobius vermicularis, Strongyloides stercoralis were similar between gorillas and human community co-habiting the same forest ecosystem in the Republic of Congo. In addition, human specific Mansonella perstans (5.1%) and other Mansonella spp. (5.1%) detected in these gorillas suggest a possible cross-species exchange. Low prevalence (2%) of Ascaris lumbricoides, Enterobius vermicularis, Strongyloides stercoralis were observed in chimpanzees, as well as a high prevalence of Abbreviata caucasica (57.1%), which should be considered carefully as this parasite can affect other NHPs, animals and humans. The Barbary macaques were less infected (7.2%) and Oesophagostomum muntiacum was the main parasite detected (5.8%). Finally, we report the presence of Pelodera sp. and an environmental Nematoda DNAs in chimpanzee feces, Nematoda sp. and Bodo sp. in gorillas, as well as DNA of uncharacterized Nematoda in apes and humans, but with a relatively lower prevalence in humans. Prevalence of extraintestinal parasites remains underestimated since feces are not the suitable sampling methods. Using non-invasive sampling (feces) we provide important information on helminths and protozoa that can infect African NHPs and human communities living around them. Public health and animal conservation authorities need to be aware of these infections, as parasites detected in African NHPs could affect both human and other animals' health

    Adenovirus infections in african humans and wild non-human primates: great diversity and cross-species transmission

    Get PDF
    Non-human primates (NHPs) are known hosts for adenoviruses (AdVs), so there is the possibility of the zoonotic or cross-species transmission of AdVs. As with humans, AdV infections in animals can cause diseases that range from asymptomatic to fatal. The aim of this study was to investigate the occurrence and diversity of AdVs in: (i) fecal samples of apes and monkeys from different African countries (Republic of Congo, Senegal, Djibouti and Algeria), (ii) stool of humans living near gorillas in the Republic of Congo, in order to explore the potential zoonotic risks. Samples were screened by real-time and standard PCRs, followed by the sequencing of the partial DNA polymerase gene in order to identify the AdV species. The prevalence was 3.3 folds higher in NHPs than in humans. More than 1/3 (35.8%) of the NHPs and 1/10 (10.5%) of the humans excreted AdVs in their feces. The positive rate was high in great apes (46%), with a maximum of 54.2% in chimpanzees (Pan troglodytes) and 35.9% in gorillas (Gorilla gorilla), followed by monkeys (25.6%), with 27.5% in Barbary macaques (Macaca sylvanus) and 23.1% in baboons (seven Papio papio and six Papio hamadryas). No green monkeys (Chlorocebus sabaeus) were found to be positive for AdVs. The AdVs detected in NHPs were members of Human mastadenovirus E (HAdV-E), HAdV-C or HAdV-B, and those in the humans belonged to HAdV-C or HAdV-D. HAdV-C members were detected in both gorillas and humans, with evidence of zoonotic transmission since phylogenetic analysis revealed that gorilla AdVs belonging to HAdV-C were genetically identical to strains detected in humans who had been living around gorillas, and, inversely, a HAdV-C member HAdV type was detected in gorillas. This confirms the gorilla-to-human transmission of adenovirus. which has been reported previously. In addition, HAdV-E members, the most often detected here, are widely distributed among NHP species regardless of their origin, i.e., HAdV-E members seem to lack host specificity. Virus isolation was successful from a human sample and the strain of the Mbo024 genome, of 35 kb, that was identified as belonging to HAdV-D, exhibited close identity to HAdV-D members for all genes. This study provides information on the AdVs that infect African NHPs and the human populations living nearby, with an evident zoonotic transmission. It is likely that AdVs crossed the species barrier between different NHP species (especially HAdV-E members), between NHPs and humans (especially HAdV-C), but also between humans, NHPs and other animal species

    Effectiveness, safety/tolerability of OBV/PTV/r ± DSV in patients with HCV genotype 1 or 4 with/without HIV-1 co-infection, chronic kidney disease (CKD) stage IIIb-V and dialysis in Spanish clinical practice - Vie-KinD study

    Get PDF
    Limited data are available on the effectiveness and tolerability of direct-acting antivirals (DAAs) therapies in the real world for HCV-infected patients with comorbidities. This study aimed to describe the effectiveness of OBV/PTV/r ± DSV (3D/2D regimen) with or without ribavirin (RBV) in HCV or HCV/HIV co-infected patients with GT1/GT4 and CKD (IIIb-V stages), including those under hemodialysis and peritoneal dialysis in routine clinical practice in Spain in 2015.Non-interventional, retrospective, multicenter data collection study in 31 Spanish sites. Socio-demographic, clinical variables, study treatment characteristics, effectiveness and tolerability data were collected from medical records.Data from 135 patients with a mean age (SD) of 58.3 (11.4) years were analyzed: 92.6% GT1 (81.6% GT1b and 17.6% GT1a) and 7.4% GT4, 14 (10.4%) HIV/HCV co-infected, 19.0% with fibrosis F3 and 28.1% F4 by FibroScanŸ, 52.6% were previously treated with pegIFN and RBV. 11.1%, 14.8% and 74.1% of patients had CKD stage IIIb, IV and V respectively. 68.9% of patients were on hemodialysis; 8.9% on peritoneal dialysis and 38.5% had history of renal transplant. A total of 125 (96.2%) of 135 patients were treated with 3D, 10 (7.4%) with 2D and 30.4% received RBV. The overall intention-to-treat (ITT) sustained virologic response at week 12 (SVR12) was 92.6% (125/135) and the overall modified-ITT (mITT) SVR12 was 99.2% (125/126). The SVR12 rates (ITT) per sub-groups were: HCV mono-infected (91.7%), HCV/HIV co-infected (100%), GT1 (92.0%), GT4 (100%), CKD stage IIIb (86.7%), stage IV (95%) and stage V (93%). Among the 10 non-SVR there was only 1 virologic failure (0.7%); 4 patients had missing data due lost to follow up (3.0%) and 5 patients discontinued 3D/2D regimen (3.7%): 4 due to severe adverse events (including 3 deaths) and 1 patientŽs decision.These results have shown that 3D/2D regimens are effective and tolerable in patients with advanced CKD including those in dialysis with GT 1 or 4 chronic HCV mono-infection and HIV/HCV coinfection in a real-life cohort. The overall SVR12 rates were 92.6% (ITT) and 99.2% (mITT) without clinically relevant changes in eGFR until 12 weeks post-treatment. These results are consistent with those reported in clinical trials

    Zoonotic Abbreviata caucasica in Wild Chimpanzees (Pan troglodytes verus) from Senegal

    No full text
    Abbreviata caucasica(syn.Physaloptera mordens) has been reported in human and various non-human primates including great apes. The identification of this nematode is seldom performed and relies on egg characterization at the coproscopy, in the absence of any molecular tool. Following the recovery of two adult females ofA. caucasicafrom the feces of wild Senegalese chimpanzees, morphometric characteristics were reported and new data on the width of the esophagus (0.268-0.287 mm) and on the cuticle structure (0.70-0.122 mm) were provided. The molecular characterization of a set of mitochondrial (cox1, 16S rRNA, 12S rRNA) and nuclear (18S rRNA and ITS2) partial genes was performed. Our phylogenetic analysis indicates for the first time thatA. caucasicais monophyletic withPhysalopteraspecies. A novel molecular tool was developed for the routine diagnosis ofA. caucasicaand the surveillance of Nematoda infestations. AnA. caucasica-specific qPCR targeting the 12S gene was assessed. The assay was able to detect up to 1.13 x 10(-3)eggs/g of fecal matter irrespective of its consistency, with an efficiency of 101.8% and a perfect adjustment (R-2= 0.99). The infection rate byA. caucasicain the chimpanzee fecal samples was 52.08%. Only 6.19% of the environmental samples were positive for nematode DNA and any forA. caucasica. Our findings indicate the need for further studies to clarify the epidemiology, circulation, life cycle, and possible pathological effects of this infestation using the molecular tool herein developed

    Population Diversity of Antibiotic Resistant Enterobacterales in Samples From Wildlife Origin in Senegal: Identification of a Multidrug Resistance Transposon Carrying blaCTX–M–15 in Escherichia coli

    No full text
    International audienceIntroduction The role of wildlife in the transmission of antimicrobial resistant (AMR) is suspected but scarcely reported in current studies. Therefore, we studied the dynamics and prevalence of antibiotic-resistant Enterobacterales in antibiotic-limited areas of Senegal. Materials and Methods We collected fecal samples from monkeys and apes (N = 226) and non-fecal environmental samples (N = 113) from Senegal in 2015 and 2019. We grew the samples on selective media, subsequently isolated AMR Enterobacterales , and then sequenced their genomes. Results We isolated 72 different Enterobacterales among which we obtained a resistance rate of 65% for colistin (N = 47/72) and 29% for third generation-cephalosporin (C3G) (29%, N = 21/72). Interestingly, almost 46% of our isolates, among Enterobacter sp., Citrobacter cronae and Klebsiella aerogenes , belong to 34 new STs. Moreover, the genes bla CTX – M –15 , bla TEM 1 B , sul2 , dfrA14 , qnrs , aph ( 3â€Čâ€Č ), aph ( 6 ), tetA , and tetR harbored within a transposon on the IncY plasmid of ST224 Escherichia coli were transferred and inserted into a ST10 E . coli phage coding region. Conclusion Wildlife constitutes a rich, unexplored reservoir of natural microbial diversity, AMR genes and international resistant clones pathogenic in humans. The presence of a transposon that carries AMR genes is intriguing since no antibiotics are used in the non-human primates we studied

    Parasitic Infections in African Humans and Non-Human Primates

    No full text
    Different protozoa and metazoa have been detected in great apes, monkeys and humans with possible interspecies exchanges. Some are either nonpathogenic or their detrimental effects on the host are not yet known. Others lead to serious diseases that can even be fatal. Their survey remains of great importance for public health and animal conservation. Fecal samples from gorillas (Gorilla gorilla) and humans living in same area in the Republic of Congo, chimpanzees (Pan troglodytes) from Senegal and one other from the Republic of Congo, Guinea baboons (Papio papio)from Senegal, hamadryas baboons (Papio hamadryas) from Djibouti and Barbary macaques(Macaca sylvanus) from Algeria, were collected. DNA was extracted and screened using specific qPCR assays for the presence of a large number of helminths and protozoa. Positive samples were then amplified in standard PCRs and sequenced when possible. Overall, infection rate was 36.5% in all non-human primates (NHPs) and 31.6% in humans. Great apes were more often infected (63.6%) than monkeys (7.3%). At least twelve parasite species, including ten nematodes and two protozoa were discovered in NHPs and five species, including four nematodes and a protozoan in humans. The prevalences ofGiarida lamblia,Necator americanus, Enterobius vermicularis, Strongyloides stercoraliswere similar between gorillas and human community co-habiting the same forest ecosystem in the Republic of Congo. In addition, human specificMansonella perstans(5.1%) and otherMansonellaspp. (5.1%) detected in these gorillas suggest a possible cross-species exchange. Low prevalence (2%) ofAscaris lumbricoides, Enterobius vermicularis, Strongyloides stercoraliswere observed in chimpanzees, as well as a high prevalence ofAbbreviata caucasica(57.1%), which should be considered carefully as this parasite can affect other NHPs, animals and humans. The Barbary macaques were less infected (7.2%) andOesophagostomum muntiacumwas the main parasite detected (5.8%). Finally, we report the presence ofPeloderasp. and an environmental Nematoda DNAs in chimpanzee feces,Nematodasp. andBodosp. in gorillas, as well as DNA of uncharacterized Nematoda in apes and humans, but with a relatively lower prevalence in humans. Prevalence of extraintestinal parasites remains underestimated since feces are not the suitable sampling methods. Using non-invasive sampling (feces) we provide important information on helminths and protozoa that can infect African NHPs and human communities living around them. Public health and animal conservation authorities need to be aware of these infections, as parasites detected in African NHPs could affect both human and other animals' health

    Adenovirus Infections in African Humans and Wild Non-Human Primates: Great Diversity and Cross-Species Transmission

    No full text
    International audienceNon-human primates (NHPs) are known hosts for adenoviruses (AdVs), so there is the possibility of the zoonotic or cross-species transmission of AdVs. As with humans, AdV infections in animals can cause diseases that range from asymptomatic to fatal. The aim of this study was to investigate the occurrence and diversity of AdVs in: (i) fecal samples of apes and monkeys from different African countries (Republic of Congo, Senegal, Djibouti and Algeria), (ii) stool of humans living near gorillas in the Republic of Congo, in order to explore the potential zoonotic risks. Samples were screened by real-time and standard PCRs, followed by the sequencing of the partial DNA polymerase gene in order to identify the AdV species. The prevalence was 3.3 folds higher in NHPs than in humans. More than 1/3 (35.8%) of the NHPs and 1/10 (10.5%) of the humans excreted AdVs in their feces. The positive rate was high in great apes (46%), with a maximum of 54.2% in chimpanzees (Pan troglodytes) and 35.9% in gorillas (Gorilla gorilla), followed by monkeys (25.6%), with 27.5% in Barbary macaques (Macaca sylvanus) and 23.1% in baboons (sevenPapio papioand sixPapio hamadryas). No green monkeys (Chlorocebus sabaeus) were found to be positive for AdVs. The AdVs detected in NHPs were members ofHuman mastadenovirus E(HAdV-E), HAdV-C or HAdV-B, and those in the humans belonged to HAdV-C or HAdV-D. HAdV-C members were detected in both gorillas and humans, with evidence of zoonotic transmission since phylogenetic analysis revealed that gorilla AdVs belonging to HAdV-C were genetically identical to strains detected in humans who had been living around gorillas, and, inversely, a HAdV-C member HAdV type was detected in gorillas. This confirms the gorilla-to-human transmission of adenovirus. which has been reported previously. In addition, HAdV-E members, the most often detected here, are widely distributed among NHP species regardless of their origin, i.e., HAdV-E members seem to lack host specificity. Virus isolation was successful from a human sample and the strain of the Mbo024 genome, of 35 kb, that was identified as belonging to HAdV-D, exhibited close identity to HAdV-D members for all genes. This study provides information on the AdVs that infect African NHPs and the human populations living nearby, with an evident zoonotic transmission. It is likely that AdVs crossed the species barrier between different NHP species (especially HAdV-E members), between NHPs and humans (especially HAdV-C), but also between humans, NHPs and other animal species

    Multidrug-Resistant Klebsiella pneumoniae Clones from Wild Chimpanzees and Termites in Senegal

    No full text
    International audienceAntibiotic resistance genes exist naturally in various environments far from human usage. Here, we investigated multidrug-resistant Klebsiella pneumoniae , a common pathogen of chimpanzees and humans. We screened antibiotic-resistant K. pneumoniae from 48 chimpanzee stools and 38 termite mounds ( n = 415 samples) collected in protected areas in Senegal

    Treponematosis in critically endangered Western chimpanzees (Pan troglodytes verus) in Senegal

    No full text
    International audienceTreponematoses encompass a group of chronic and debilitating bacterial diseases transmitted sexually or by direct contact and attributed to Treponema pallidum. Despite being documented since as far back as 1963, the epidemiology of treponematoses in wild primates has remained an uninvestigated territory due to the inherent challenges associated with conducting examinations and obtaining invasive biological samples from wild animals. The primary aim of this study was to investigate the presence of treponemal infections in the critically endangered Western chimpanzees in Senegal, utilizing an innovative non-invasive stool serology method. We provide compelling evidence of the existence of anti-Treponema-specific antibodies in 13 out of 29 individual chimpanzees. Our study also underscores the significant potential of stool serology as a valuable non-invasive tool for monitoring and surveilling crucial emerging diseases in wild animals. We recognize two major implications: (1) the imperative need to assess the risks of treponematosis in Western chimpanzee populations and (2) the necessity to monitor and manage this disease following a holistic One Health approach
    corecore