1,252 research outputs found

    Hawking radiation in dispersive theories, the two regimes

    Full text link
    We compute the black hole radiation spectrum in the presence of high-frequency dispersion in a large set of situations. In all cases, the spectrum diverges like the inverse of the Killing frequency. When studying the low-frequency spectrum, we find only two regimes: an adiabatic one where the corrections with respect to the standard temperature are small, and an abrupt one regulated by dispersion, in which the near-horizon metric can be replaced by step functions. The transition from one regime to the other is governed by a single parameter which also governs the net redshift undergone by dispersive modes. These results can be used to characterize the quasiparticles spectrum of recent and future experiments aiming to detect the analogue Hawking radiation. They also apply to theories of quantum gravity which violate Lorentz invariance.Comment: 11 pages, 9 figure

    And what if gravity is intrinsically quantic ?

    Full text link
    Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, sting theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and former a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum mechanics and gravity. Without gravity quantum mechanics becomes ambiguous. We consider this observation as the evidence for an intrinsic relation between these fundamental laws of nature. We suggest a quantum role and definition for gravity in the context of a quantum universe, and present a preliminary formulation for gravity in a system with a finite number of particles.Comment: 8 pages, 1 figure. To appear in the proceedings of the DICE2008 conference, Castiglioncello, Tuscany, Italy, 22-26 Sep. 2008. V2: some typos remove

    The depletion in Bose Einstein condensates using Quantum Field Theory in curved space

    Get PDF
    Using methods developed in Quantum Field Theory in curved space we can estimate the effects of the inhomogeneities and of a non vanishing velocity on the depletion of a Bose Einstein condensate within the hydrodynamical approximation.Comment: 4 pages, no figure. Discussion extended and references adde

    On the robustness of acoustic black hole spectra

    Full text link
    We study the robustness of the spectrum emitted by an acoustic black hole by considering series of stationary flows that become either subsonic or supersonic, i.e. when the horizon disappears. We work with the superluminal Bogoliubov dispersion of Bose--Einstein condensates. We find that the spectrum remains remarkably Planckian until the horizon disappears. When the flow is everywhere supersonic, new pair creation channels open. This will be the subject of a forthcoming work.Comment: 4 pages, 2 figure, jpconf.cls; to appear in the proceedings of the Spanish Relativity Meeting ERE201

    Analog black holes in flowing dielectrics

    Get PDF
    We show that a flowing dielectric medium with a linear response to an external electric field can be used to generate an analog geometry that has many of the formal properties of a Schwarzschild black hole for light rays, in spite of birefringence. We also discuss the possibility of generating these analog black holes in the laboratory.Comment: Revtex4 file, 7 pages, 4 eps figures, a few changes in presentation, some references added, conclusions unchange

    Regularization of fluctuations near the sonic horizon due to the quantum potential and its influence on the Hawking radiation

    Full text link
    We consider dynamics of fluctuations in transonically accelerating Bose-Einstein condensates and luminous liquids (coherent light propagating in a Kerr nonlinear medium) using the hydrodynamic approach. It is known that neglecting the quantum potential (QP) leads to a singular behavior of quantum and classical fluctuations in the vicinity of the Mach (sonic) horizon, which in turn gives rise to the Hawking radiation. The neglect of QP is well founded at not too small distances xlh|x| \gg l_h from the horizon, where lhl_h is the healing length. Taking the QP into account we show that a second characteristic length lr>lhl_r > l_h exists, such that the linear fluctuation modes become regularized for xlr|x| \ll l_r. At xlr|x| \gg l_r the modes keep their singular behavior, which however is influenced by the QP. As a result we find a deviation of the high frequency tail of the spectrum of Hawking radiation from Planck's black body radiation distribution. Similar results hold for the wave propagation in Kerr nonlinear media where the length lhl_h and lrl_r exist due to the nonlinearity.Comment: 23 pages, 2 figure

    Hawking radiation of massive modes and undulations

    Full text link
    We compute the analogue Hawking radiation for modes which posses a small wave vector perpendicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This generates an extra mode mixing that occurs in the supersonic region, which cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at the linear level, unlike what was recently found in the massless case. In addition, we point out that the mass introduces a new type of undulation which is produced in black hole flows, and which is well described in the hydrodynamical regime.Comment: 37 pages, 8 figures, published versio

    Black hole lasers, a mode analysis

    Full text link
    We show that the black hole laser effect discovered by Corley & Jacobson should be described in terms of frequency eigenmodes that are spatially bound. The spectrum contains a discrete and finite set of complex frequency modes which appear in pairs and which encode the laser effect. In addition, it contains real frequency modes that form a continuous set when space is infinite, and which are only elastically scattered, i.e., not subject to any Bogoliubov transformation. The quantization is straightforward, but the calculation of the asymptotic fluxes is rather involved. When the number of complex frequency modes is small, our expressions differ from those given earlier. In particular, when the region between the horizons shrinks, there is a minimal distance under which no complex frequency mode exists, and no radiation is emitted. Finally, we relate this effect to other dynamical instabilities found for rotating black holes and in electric fields, and we give the conditions to get this type of instability.Comment: 19 pages, 3 figures, main changes: new figure and new Sec.6 `conditions for having a laser effect', final version accepted in PR

    Superradiant scattering from a hydrodynamic vortex

    Full text link
    We show that sound waves scattered from a hydrodynamic vortex may be amplified. Such superradiant scattering follows from the physical analogy between spinning black holes and hydrodynamic vortices. However a sonic horizon analogous to the black hole event horizon does not exist unless the vortex possesses a central drain, which is challenging to produce experimentally. In the astrophysical domain, superradiance can occur even in the absence of an event horizon: we show that in the hydrodynamic analogue, a drain is not required and a vortex scatters sound superradiantly. Possible experimental realization in dilute gas Bose-Einstein condensates is discussed.Comment: 10 pages, 1 figur
    corecore