research

Regularization of fluctuations near the sonic horizon due to the quantum potential and its influence on the Hawking radiation

Abstract

We consider dynamics of fluctuations in transonically accelerating Bose-Einstein condensates and luminous liquids (coherent light propagating in a Kerr nonlinear medium) using the hydrodynamic approach. It is known that neglecting the quantum potential (QP) leads to a singular behavior of quantum and classical fluctuations in the vicinity of the Mach (sonic) horizon, which in turn gives rise to the Hawking radiation. The neglect of QP is well founded at not too small distances xlh|x| \gg l_h from the horizon, where lhl_h is the healing length. Taking the QP into account we show that a second characteristic length lr>lhl_r > l_h exists, such that the linear fluctuation modes become regularized for xlr|x| \ll l_r. At xlr|x| \gg l_r the modes keep their singular behavior, which however is influenced by the QP. As a result we find a deviation of the high frequency tail of the spectrum of Hawking radiation from Planck's black body radiation distribution. Similar results hold for the wave propagation in Kerr nonlinear media where the length lhl_h and lrl_r exist due to the nonlinearity.Comment: 23 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions