We show that sound waves scattered from a hydrodynamic vortex may be
amplified. Such superradiant scattering follows from the physical analogy
between spinning black holes and hydrodynamic vortices. However a sonic horizon
analogous to the black hole event horizon does not exist unless the vortex
possesses a central drain, which is challenging to produce experimentally. In
the astrophysical domain, superradiance can occur even in the absence of an
event horizon: we show that in the hydrodynamic analogue, a drain is not
required and a vortex scatters sound superradiantly. Possible experimental
realization in dilute gas Bose-Einstein condensates is discussed.Comment: 10 pages, 1 figur