134 research outputs found

    Turning up the volume on mutational pressure: Is more of a good thing always better? (A case study of HIV-1 Vif and APOBEC3)

    Get PDF
    APOBEC3G and APOBEC3F are human cytidine deaminases that serve as innate antiviral defense mechanisms primarily by introducing C-to-U changes in the minus strand DNA of retroviruses during replication (resulting in G-to-A mutations in the genomic sense strand sequence). The HIV-1 Vif protein counteracts this defense by promoting the proteolytic degradation of APOBEC3G and APOBEC3F in the host cell. In the absence of Vif expression, APOBEC3 is incorporated into HIV-1 virions and the viral genome undergoes extensive G-to-A mutation, or "hypermutation", typically rendering it non-viable within a single replicative cycle. Consequently, Vif is emerging as an attractive target for pharmacological intervention and therapeutic vaccination. Although a highly effective Vif inhibitor may result in mutational meltdown of the viral quasispecies, a partially effective Vif inhibitor may accelerate the evolution of drug resistance and immune escape due to the codon structure and recombinogenic nature of HIV-1. This hypothesis rests on two principal assumptions which are supported by experimental evidence: a) there is a dose response between intracellular APOBEC concentration and degree of viral hypermutation, and, b) HIV-1 can tolerate an elevated mutation rate, and a true error or extinction threshold is as yet undetermined. Rigorous testing of this hypothesis will have timely and critical implications for the therapeutic management of HIV/AIDS, and delve into the complexities underlying the induction of lethal mutagenesis in a viral pathogen

    Hiv-1 tat and morphine differentially disrupt pyramidal cell structure and function and spatial learning in hippocampal area ca1: Continuous versus interrupted morphine exposure

    Get PDF
    About half the people infected with human immunodeficiency virus (HIV) have neurocognitive deficits that often include memory impairment and hippocampal deficits, which can be exacerbated by opioid abuse. To explore the effects of opioids and HIV on hippocampal CA1 pyramidal neuron structure and function, we induced HIV-1 transactivator of transcription (Tat) expression in transgenic mice for 14 d and co-administered time-release morphine or vehicle subcutaneous implants during the final 5 d (days 9–14) to establish steady-state morphine levels. Morphine was withheld from some ex vivo slices during recordings to begin to assess the initial pharmacokinetic consequences of opioid withdrawal. Tat expression reduced hippocampal CA1 pyramidal neuronal excitability at lower stimulating currents. Pyramidal cell firing rates were unaffected by continuous morphine exposure. Behaviorally, exposure to Tat or high dosages of morphine impaired spatial memory. Exposure to Tat and steady-state levels of morphine appeared to have largely independent effects on pyramidal neuron structure and function, a response that is distinct from other vulnerable brain regions such as the striatum. By contrast, acutely withholding morphine (from morphine-tolerant ex vivo slices) revealed unique and selective neuroadaptive shifts in CA1 pyramidal neuronal excitability and dendritic plasticity, including some interactions with Tat. Collectively, the results show that opioid-HIV interactions in hippocampal area CA1 are more nuanced than previously assumed, and appear to vary depending on the outcome assessed and on the pharmacokinetics of morphine exposure

    HIV-1/HSV-2 Co-Infected Adults in Early HIV-1 Infection Have Elevated CD4+ T Cell Counts

    Get PDF
    Introduction. HIV-1 is often acquired in the presence of pre-existing co-infections, such as Herpes Simplex Virus 2 (HSV-2). We examined the impact of HSV-2 status at the time of HIV-1 acquisition for its impact on subsequent clinical course, and total CD4+ T cell phenotypes. Methods. We assessed the relationship of HSV-1/HSV-2 co-infection status on CD4+ T cell counts and HIV-1 RNA levels over time prior in a cohort of 186 treatment naive adults identified during early HIV-1 infection. We assessed the activation and differentiation state of total CD4+ T cells at study entry by HSV-2 status. Results. of 186 recently HIV-1 infected persons, 101 (54%) were sero-positive for HSV-2. There was no difference in initial CD8+ T cell count, or differences between the groups for age, gender, or race based on HSV-2 status. Persons with HIV-1/HSV-2 co-infection sustained higher CD4+ T cell counts over time (+69 cells/ul greater (SD = 33.7, p = 0.04) than those with HIV-1 infection alone (Figure 1), after adjustment for HIV-1 RNA levels (-57 cells per 1 log(10) higher HIV-1 RNA, p<0.0001). We did not observe a relationship between HSV-2 infection status with plasma HIV-1 RNA levels over time. HSV-2 acquistion after HIV-1 acquisition had no impact on CD4+ count or viral load. We did not detect differences in CD4+ T cell activation or differentiation state by HSV-2+ status. Discussion. We observed no effect of HSV-2 status on viral load. However, we did observe that treatment naive, recently HIV-1 infected adults co-infected with HSV-2+ at the time of HIV-1 acquisition had higher CD4+ T cell counts over time. If verified in other cohorts, this result poses a striking paradox, and its public health implications are not immediately clear.Brazilian Program for STD and AIDS, Ministry of HealthSão Paulo City Health DepartmentFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)NIAID/NIHJohn E. Fogarty International CenterAIDS Research Institute of the AIDS Biology Program at UCSFCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Brazilian Ministry of EducationUniversidade Federal de São Paulo, Div Infect Dis, São Paulo, BrazilUniv Calif San Francisco, San Francisco Gen Hosp, Div HIV AIDS, San Francisco, CA USAUniv Calif San Francisco, Dept Expt Med, San Francisco, CA USASao Paula City Hlth Syst, São Paulo, BrazilUniversidade Federal de São Paulo, Div Infect Dis, São Paulo, BrazilBrazilian Program for STD and AIDS, Ministry of Health: 914/BRA/3014 UNESCO/KallasSão Paulo City Health Department: 2004-0.168.922-7/KallasFAPESP: 04/15856-9/KallasNIAID/NIH: AI066917/BarbourNIAID/NIH: AI064520/NixonJohn E. Fogarty International Center: D43 TW00003Web of Scienc

    High CD8+ T Cell Activation Marks a Less Differentiated HIV-1 Specific CD8+ T Cell Response that Is Not Altered by Suppression of Viral Replication

    Get PDF
    The relationship of elevated T cell activation to altered T cell differentiation profiles, each defining features of HIV-1 infection, has not been extensively explored. We hypothesized that anti-retroviral suppression of T cell activation levels would lead to alterations in the T cell differentiation of total and HIV-1 specific CD8+ T cell responses among recently HIV-1 infected adults.We performed a longitudinal study simultaneously measuring T cell activation and maturation markers on both total and antigen-specific T cells in recently infected adults: prior to treatment; after the initiation of HAART; and after treatment was halted. Prior to treatment, HIV-1 Gag-specific CD8+ T cells were predominantly of a highly activated, intermediate memory (CD27+CD28-) phenotype, while CMV pp65-specific CD8+ T cells showed a late memory (CD27-CD28-), low activation phenotype. Participants with the highest fraction of late memory (CD27-CD28-) HIV-1-specific CD8+ T cells had higher CD4+ T cell counts (rho = +0.74, p = 0.004). In turn, those with the highest fraction of intermediate memory (CD27+ CD28-) HIV-1 specific CD8+ T cells had high total CD8+ T cell activation (rho = +0.68, p = 0.01), indicating poorer long-term clinical outcomes. The HIV-1 specific T cell differentiation profile was not readily altered by suppression of T cell activation following HAART treatment.A more differentiated, less activated HIV-1 specific CD8+ T cell response may be clinically protective. Anti-retroviral treatment initiated two to four months after infection lowered T cell activation but had no effect on the differentiation profile of the HIV-1-specific response. Intervention during the first month of acute infection may be required to shift the differentiation phenotype of HIV-1 specific responses to a more clinically favorable profile

    IL-2 Immunotherapy to Recently HIV-1 Infected Adults Maintains the Numbers of IL-17 Expressing CD4+ T (TH17) Cells in the Periphery

    Get PDF
    Little is known about the manipulation of IL-17 producing CD4+ T cells (TH17) on a per-cell basis in humans in vivo. Previous studies on the effects of IL-2 on IL-17 secretion in non-HIV models have shown divergent results. We hypothesized that IL-2 would mediate changes in IL-17 levels among recently HIV-1-infected adults receiving anti-retroviral therapy. We measured cytokine T cell responses to CD3/CD28, HIV-1 Gag, and CMV pp65 stimulation, and changes in multiple CD4+ T cell subsets. Those who received IL-2 showed a robust expansion of naive and total CD4+ T cell counts and T-reg counts. However, after IL-2 treatment, the frequency of TH17 cells declined, while counts of TH17 cells did not change due to an expansion of the CD4+ naïve T cell population (CD27+CD45RA+). Counts of HIV-1 Gag-specific T cells declined modestly, but CMV pp65 and CD3/CD28 stimulated populations did not change. Hence, in contrast with recent studies, our results suggest IL-2 is not a potent in vivo regulator of TH17 cell populations in HIV-1 disease. However, IL-2-mediated T-reg expansions may selectively reduce responses to certain antigen-specific populations, such as HIV-1 Gag

    Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection

    Get PDF
    Progressive loss of T cell functionality is a hallmark of chronic infection with human immunodeficiency virus 1 (HIV-1). We have identified a novel population of dysfunctional T cells marked by surface expression of the glycoprotein Tim-3. The frequency of this population was increased in HIV-1–infected individuals to a mean of 49.4 ± SD 12.9% of CD8+ T cells expressing Tim-3 in HIV-1–infected chronic progressors versus 28.5 ± 6.8% in HIV-1–uninfected individuals. Levels of Tim-3 expression on T cells from HIV-1–infected inviduals correlated positively with HIV-1 viral load and CD38 expression and inversely with CD4+ T cell count. In progressive HIV-1 infection, Tim-3 expression was up-regulated on HIV-1–specific CD8+ T cells. Tim-3–expressing T cells failed to produce cytokine or proliferate in response to antigen and exhibited impaired Stat5, Erk1/2, and p38 signaling. Blocking the Tim-3 signaling pathway restored proliferation and enhanced cytokine production in HIV-1–specific T cells. Thus, Tim-3 represents a novel target for the therapeutic reversal of HIV-1–associated T cell dysfunction

    PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data.

    Get PDF
    Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now many completely sequenced genomes available from both human pathogenic and innocuous strains. The data can be used to identify gene families that correlate with pathogenicity and to develop tools to predict the pathogenicity of newly sequenced strains, investigations that previously were mainly done by means of more expensive and time consuming experimental approaches. We describe PathogenFinde
    corecore