52 research outputs found

    Effect of Clay Amounts on Morphology and Mechanical Performances in Multiscale PET Composites

    Get PDF
    This work presents an investigation of the properties of poly(ethylene terephthalate)/glass fibers/nanoclay multiscale composites. The aim is to demonstrate the effect of adding various clay amounts on the morphology and mechanical performances of multiscale PET composites. Multiscale composites were prepared by adding 0.5, 1.0, 3.0, and 5.0 wt% of Cloisite 15A montmorrillonite. Initially, a masterbatch of pure PET blended with 10 wt% of Cloisite 15A was obtained in a co-rotating twin screw extruder. The multiscale composites were then blended via mechanical mixing, and injection moulded by adding the masterbatch to the glass fibre reinforced matrix. The morphological and mechanical characterizations of all compounds are discussed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the characteristic (001) peak of the nanocomposite obtained by extrusion (masterbatch) shifted to the lower angle region stating an intercalated structure. However, the subsequent injection moulding process changed the morphological structure of the multiscale nanocomposites reducing the basal distance mostly for small loadings of nanoclay. The addition of nanoclay to PET matrices increases the degree of crystallinity, the clay platelets possibly playing the role of nucleating agent, as revealed by DSC and FTIR. The time relaxation spectra broaden as seen by DMA, as the ratio of clay/polymer interfaces increases. The yield stress of composites with 0.5 and 1 wt% of C15A content are enhanced. For more than 3% of nanoclay, the yield stress decreases. The Young’s modulus is increased when adding nanoclay. Indeed, clay exfoliation was not attained, but the intercalated particle dispersion improved the stiffness properties of PET/glass fibers/nanoclay composites

    Elastic image registration versus speckle tracking for 2-D myocardial motion estimation: a direct comparison in vivo

    Get PDF
    Despite the availability of multiple solutions for assessing myocardial strain by ultrasound, little is currently known about the relative performance of the different methods. In this study, we sought to contrast two strain estimation techniques directly (speckle tracking and elastic registration) in an in vivo setting by comparing both to a gold standard reference measurement. In five open-chest sheep instrumented with ultrasonic microcrystals, 2-D images were acquired with a GE Vivid7 ultrasound system. Radial (epsilon(RR)) , longitudinal (epsilon(LL)) , and circumferential strain (epsilon(CC)) were estimated during four inotropic stages: at rest, during esmolol and dobutamine infusion, and during acute ischemia. The correlation of the end-systolic strain values of a well-validated speckle tracking approach and an elastic registration method against sonomicrometry were comparable for epsilon(LL) (r = 0.70 versus r = 0.61, respectively; p = 0.32) and epsilon(CC) (r = 0.73 versus r = 0.80 respectively; p = 0.31). However, the elastic registration method performed considerably better for epsilon(RR) (r = 0.64 versus r = 0.85 respectively; p = 0.09). Moreover, the bias and limits of agreement with respect to the reference strain estimates were statistically significantly smaller in this direction (p < 0.001). This could be related to regularization which is imposed during the motion estimation process as opposed to an a posteriori regularization step in the speckle tracking method. Whether one method outperforms the other in detecting dysfunctional regions remains the topic of future research

    Mo thio and oxo-thio molecular complexes film as self-healing catalyst for photocatalytic hydrogen evolution on 2D materials

    Get PDF
    2D semiconducting nanosheets of Transition Metal Dichalcogenides are attractive materials for solar energy conversion because of their unique absorption properties. Here, we show that Mo thio- and oxo-thio-complexes anchored on 2D p-WSe2 nanosheets considerably boost water splitting under visible light irradiation with photocurrent density up to 2.0 mA cm−2 at -0.2 V/NHE. Besides developing high electro-catalytic activity, the Mo-complexes film is also shown to be capable of healing surface defects. We propose that the observed healing of surface defects arises from the strong adsorption on point defects of the 2D WSe2 substrate of Mo complexes such as (MoS4)2-, (MoOS3)2-, (Mo2S6O2)2- as supported by DFT calculations. In addition, the thio-, oxo-thio Mo complexes films are shown to enhance charge carrier separation and migration favouring the hydrogen evolution reaction, putting forward the use of thio-, oxo-thio-Mo complexes as a multicomponent passivation layer exhibiting multiple properties

    Dengue Virus Type 2 Infections of Aedes aegypti Are Modulated by the Mosquito's RNA Interference Pathway

    Get PDF
    A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV) infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi), is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA), which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs). These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2) infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti

    Amino Acid Availability Controls TRB3 Transcription in Liver through the GCN2/eIF2α/ATF4 Pathway

    Get PDF
    In mammals, plasma amino acid concentrations are markedly affected by dietary or pathological conditions. It has been well established that amino acids are involved in the control of gene expression. Up to now, all the information concerning the molecular mechanisms involved in the regulation of gene transcription by amino acid availability has been obtained in cultured cell lines. The present study aims to investigate the mechanisms involved in transcriptional activation of the TRB3 gene following amino acid limitation in mice liver. The results show that TRB3 is up-regulated in the liver of mice fed a leucine-deficient diet and that this induction is quickly reversible. Using transient transfection and chromatin immunoprecipitation approaches in hepatoma cells, we report the characterization of a functional Amino Acid Response Element (AARE) in the TRB3 promoter and the binding of ATF4, ATF2 and C/EBPÎČ to this AARE sequence. We also provide evidence that only the binding of ATF4 to the AARE plays a crucial role in the amino acid-regulated transcription of TRB3. In mouse liver, we demonstrate that the GCN2/eIF2α/ATF4 pathway is essential for the induction of the TRB3 gene transcription in response to a leucine-deficient diet. Therefore, this work establishes for the first time that the molecular mechanisms involved in the regulation of gene transcription by amino acid availability are functional in mouse liver

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Effect of dietary phospholipid level and phospholipid:neutral lipid value on the development of sea bass ( Dicentrarchus labrax ) larvae fed a compound diet

    No full text
    International audienceThe aim of the study was to determine the influence of dietary phospholipid concentration on survival and development in sea bass ( Dicentrarchus labrax ) larvae. Larvae were fed from day 9 to day 40 post-hatch with an isoproteic and isolipidic formulated diet with graded phospholipid levels from 27 to 116 g/kg DM and different phospholipid:neutral lipid values. The best growth (32 mg at the end of the experiment) survival (73 %) and larval quality (only 2% of malformed larvae) were obtained in the larvae fed the diet containing 116 g phospholipid/kg DM ( P < 0·05). These results were related to the amount of phosphatidylcholine and phosphatidylinositol included in this diet (35 and 16 g/kg respectively). Amylase, alkaline phosphatase and aminopeptidase N activities revealed a proper maturation of the digestive tract in the two groups fed the highest phospholipid levels. Regulation of lipase and phospholipase A2 by the relative amount of their substrate in the diet occurred mainly at the transcriptional level. The response of pancreatic lipase to dietary neutral lipid was not linear. As in mammals 200 g triacylglycerol/kg diet seems to represent a threshold level above which the response of pancreatic lipase is maximal. The response of phospholipase A2 to dietary phospholipid content was gradual and showed a great modulation range in expression. Sea bass larvae have more efficient capacity to utilize dietary phospholipid than neutral lipids. For the first time a compound diet sustaining good growth, survival and skeletal development has been formulated and can be used in total replacement of live prey in the feeding sequence of marine fish larvae
    • 

    corecore