1,963 research outputs found

    Anti-inflammatory activity of Blutaparon portulacoides ethanolic extract against the inflammatory reaction induced by Bothrops jararacussu venom and isolated myotoxins BthTX-I and II

    Get PDF
    This article reports the anti-inflammatory effect of Blutaparon portulacoides (B. portulacoides), specifically the ethanolic extract of its aerial parts, on the edema formation and leukocyte influx caused by Bothrops jararacussu (B. jararacussu) snake venom and Bothropstoxin-I and II (BthTX-I and II) isolated from this venom as an alternative treatment for Bothrops snakebites. The anti-inflammatory effect of B. portulacoides ethanolic extract was compared with an animal group pretreated with dexamethasone. B. portulacoides ethanolic extract significantly inhibited paw edema induced by B. jararacussu venom and by BthTX-I and II. Also, results demonstrated that the extract caused a reduction of the leukocyte influx induced by BthTX-I. However, the extract was not capable of inhibiting the leukocyte influx induced by the venom and by BthTX-II. In conclusion, these results suggest that the ethanolic extract of this plant possess components able to inhibit or inactivate toxins present in B. jararacussu venom, including its myotoxins, responsible for the edema formation. However, the leukocyte migration caused by the venom and BthTX-II was not inhibited by the plant, probably due to the different mechanisms involved in the edema formation and leukocyte influx. This is the first report of B. portulacoides extract as anti-inflammatory against snake venoms and isolated toxins

    Low-level laser therapy decreases local effects induced by myotoxins isolated from Bothrops jararacussu snake venom

    Get PDF
    The prominent myotoxic effects induced by Bothrops jararacussu crude venom are due, in part, to its polycationic myotoxins, BthTX-I and BthTX-II. Both myotoxins have a phospholipase A2 structure: BthTX-II is an active enzyme Asp-49 PLA2, while BthTX-I is a Lys-49 PLA2 devoid of enzymatic activity. In this study, the effect of low-level laser therapy (LLLT), 685 nm laser at a dose of 4.2 J/cm2 on edema formation, leukocyte influx and myonecrosis caused by BthTX-I and BthTX-II, isolated from Bothrops jararacussu snake venom, was analyzed. BthTX-I and BthTX-II caused a significant edema formation, a prominent leukocyte infiltrate composed predominantly by neutrophils and myonecrosis in envenomed gastrocnemius muscle. LLLT significantly reduced the edema formation, neutrophil accumulation and myonecrosis induced by both myotoxins 24 hours after the injection. LLLT reduced the myonecrosis caused by BthTX-I and BthTX-II, respectively, by 60 and 43%; the edema formation, by 41 and 60.7%; and the leukocyte influx, by 57.5 and 51.6%. In conclusion, LLLT significantly reduced the effect of these snake toxins on the inflammatory response and myonecrosis. These results suggest that LLLT should be considered a potential therapeutic approach for treatment of local effects of Bothrops species venom.Fundação Vale Paraibana de Ensin

    Long noncoding RNAs: a missing link in osteoporosis

    Get PDF
    Osteoporosis is a systemic disease that results in loss of bone density and increased fracture risk, particularly in the vertebrae and the hip. This condition and associated morbidity and mortality increase with population ageing. Long noncoding (lnc) RNAs are transcripts longer than 200 nucleotides that are not translated into proteins, but play important regulatory roles in transcriptional and post-transcriptional regulation. Their contribution to disease onset and development is increasingly recognized. Herein, we present an integrative revision on the studies that implicate lncRNAs in osteoporosis and that support their potential use as therapeutic tools. Firstly, current evidence on lncRNAs involvement in cellular and molecular mechanisms linked to osteoporosis and its major complication, fragility fractures, is reviewed. We analyze evidence of their roles in osteogenesis, osteoclastogenesis, and bone fracture healing events from human and animal model studies. Secondly, the potential of lncRNAs alterations at genetic and transcriptomic level are discussed as osteoporosis risk factors and as new circulating biomarkers for diagnosis. Finally, we conclude debating the possibilities, persisting difficulties, and future prospects of using lncRNAs in the treatment of osteoporosis.This project has been supported by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-031402—R2Bone, under the PORTUGAL 2020 Partnership Agreement, through ERDF. Authors would like to thank to FCT DL 57/2016/CP1360/CT0008 (M.I.A.) and SFRH/BD/112832/2015 (J.H.T)

    Drug Hypersensitivity Quality of Life Questionnaire: validation procedures and first results of the Portuguese version

    Get PDF
    Background: Hypersensitivity reactions to drugs are unpredictable and can be very complex and severe, even life threatening. Assess its impact on patient’s health related quality of life (HRQoL) is crucial. The Drug Hypersensitivity Quality of Life Questionnaire (DrHy-Q) is the only validated disease-specific HRQoL questionnaire. We aimed to translate and cross-cultural validate the DrHy-Q to the Portuguese population. It was also our purpose to determine the impact of drug hypersensitivity on patients’ HRQoL. Methods: The translation and cross-cultural adaptation of the DrHy-Q to Portuguese was performed according to standards. Reliability of the DrHy-Q Portuguese version was assessed in terms of internal consistency and test–retest reliability. Structural validity, divergent validity (with a generic health related QoLQ-PGWBI) and discriminant validity were also evaluated. Forty patients accepted to participate in the validation phase. The Portuguese version of the DrHy-Q was applied to 260 consecutively adult patients, studied in our Department for suspected drug hypersensitivity. Results: The Portuguese DrHy-Q showed adequate internal consistency (Cronbach’s ¿ = 0.938), good test–retest reliability [ICC = 0.713 (95% CI 0.488–0.850] and one-dimensional structure. No significant correlation was found between the DrHy-Q and the PGWBI total scores (r = - 0.010, p = 0.957). Two hundred of patients completed the study: 78.5% female; mean age = 44 ± 15 years. Mean DrHy-Q score was 36.8 ± 12.6. Two clinical factors significantly predict DrHy-Q total score: clinical manifestations and number of suspected drugs. Patients with anaphylaxis (ß = 11.005; 95% CI 5.523; 16.487), urticaria/angioedema (ß = 7.770; 95% CI 2.600; 12.940) and other manifestations (ß = 7.948; 95% CI 1.933; 13.962) are more likely to have higher DrHy-Q total score than patients with maculopapular exanthema. Patients with = 2 suspected drugs are also more likely to have worse QoL (ß = 7.927; 95% CI 3.687; 12.166). Conclusion: The Portuguese version of DrHy-Q revealed adequate validity and reliability, indicating that it is appropriate to assess the impact of drug hypersensitivity on patients’ HRQoL, providing data for a better comprehension and management of our patients. Moreover, our results highlight that the severity of the drug hypersensitivity reaction and the number of suspected drugs have impact on patient’s DrHy-QoL

    The systemic immune response to collagen-induced arthritis and the impact of bone injury in inflammatory conditions

    Get PDF
    Rheumatoid arthritis (RA) is a systemic disease that affects the osteoarticular system, associated with bone fragility and increased risk of fractures. Herein, we aimed to characterize the systemic impact of the rat collagen-induced arthritis (CIA) model and explore its combination with femoral bone defect (FD). The impact of CIA on endogenous mesenchymal stem/stromal cells (MSC) was also investigated. CIA induction led to enlarged, more proliferative, spleen and draining lymph nodes, with altered proportion of lymphoid populations. Upon FD, CIA animals increased the systemic myeloid cell proportions, and their expression of co-stimulatory molecules CD40 and CD86. Screening plasma cytokine/chemokine levels showed increased tumor necrosis factor-a (TNF-a), Interleukin (IL)-17, IL-4, IL-5, and IL-12 in CIA, and IL-2 and IL-6 increased in CIA and CIA+FD, while Fractalkine and Leptin were decreased in both groups. CIA-derived MSC showed lower metabolic activity and proliferation, and significantly increased osteogenic and chondrogenic differentiation markers. Exposure of control-MSC to TNF-a partially mimicked the CIA-MSC phenotype in vitro. In conclusion, inflammatory conditions of CIA led to alterations in systemic immune cell proportions, circulating mediators, and in endogenous MSC. CIA animals respond to FD, and the combined model can be used to study the mechanisms of bone repair in inflammatory conditions.This research was funded by the project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and AO Foundation-Switzerland (project S-15-83S). J.H.T, A.M.S, M.B.G, M.I.A and C.C were supported by FCT-Fundação para a Ciência e a Tecnologia, through the fellowships SFRH/BD/112832/2015, SFRH/BD/85968/2012, PD/BD/135489/2018, DL 57/2016/CP1360/CT0008 and DL 57/2016/CP1360/CT0004, respectively

    Upper-limb kinematics and kinetics imbalances in the determinants of front-crawl swimming at maximal speed in young international level swimmers

    Get PDF
    © 2020 The Authors. Published by Nature Research. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1038/s41598-020-68581-3© 2020, The Author(s). Short-distance swimmers may exhibit imbalances in their upper-limbs’ thrust (differences between the thrust produced by each upper-limb). At maximal speed, higher imbalances are related to poorer performances. Additionally, little is known about the relationship between thrust and swim speed, and whether hypothetical imbalances exist in the speed achieved while performing each upper-limb arm-pull. This could be a major issue at least while swimming at maximal speed. This study aimed to: (1) verify a hypothetical inter-upper limb difference in the determinants related to front-crawl at maximal swim speed, and; (2) identify the main predictors responsible for the swim speed achieved during each upper-limb arm-pull. Twenty-two male swimmers of a national junior swim team (15.92 ± 0.75 years) were recruited. A set of anthropometric, dry-land strength, thrust and speed variables were assessed. Anthropometrics identified a significant difference between dominant and non-dominant upper-limbs (except for the hand surface area). Dry-land strength presented non-significant difference (p < 0.05) between the dominant and non-dominant upper-limbs. Overall, thrust and speed variables revealed a significant difference (p < 0.05) between dominant and non-dominant upper-limbs over a 25 m time-trial in a short-course pool. Swimmers were not prone to maintaining the thrust and speed along the trial where a significant variation was noted (p < 0.05). Using multilevel regression, the speed achieved by each upper-limb identified a set of variables, with the peak speed being the strongest predictor (dominant: estimate = 0.522, p < 0.001; non-dominant: estimate = 0.756, p < 0.001). Overall, swimmers exhibit significant differences between upper-limbs determinants. The upper-limb noting a higher dry-land strength also presented a higher thrust, and consequently higher speed. Coaches should be aware that sprint swimmers produce significant differences in the speed achieved by each one of their upper-limbs arm-pull.This project was supported by the National Funds through FCT—Portuguese Foundation for Science and Technology (UIDB/DTP/04045/2020).Accepted versio

    Impact of a legumes diet on the human gut microbiome articulated with fecal and plasma metabolomes: A pilot study

    Get PDF
    Background & aims: Legumes intake is known to be associated with several health benefits the origins of which is still a matter of debate. This paper addresses a pilot small cohort to probe for metabolic aspects of the interplay between legumes intake, human metabolism and gut microbiota. Methods: Untargeted nuclear magnetic resonance (NMR) metabolomics of blood plasma and fecal extracts was carried out, in tandem with qPCR analysis of feces, to assess the impact of an 8-week pilot legumes diet intervention on the fecal and plasma metabolomes and gut microbiota of 19 subjects. Results: While the high inter-individual variability hindered the detection of statistically significant changes in the gut microbiome, increased fecal glucose and decreased threonine levels were noted. Correlation analysis between the microbiome and fecal metabolome lead to putative hypotheses regarding the metabolic activities of prevalent bacteria groups (Clostridium leptum subgroup, Roseburia spp., and Faecalibacterium prausnitzii). These included elevated fecal glucose as a preferential energy source, the involvement of valerate/isovalerate and reduced protein degradation in gut microbiota. Plasma metabolomics advanced mannose and betaine as potential markers of legume intake and unveiled a decrease in formate and ketone bodies, the latter suggesting improved energy utilization through legume carbohydrates. Amino acid metabolism was also apparently affected, as suggested by lowered urea, histidine and threonine levels. Conclusions: Despite the high inter-individual gut microbiome variability characterizing the small cohort addressed, combination of microbiological measurements and untargeted metabolomics unveiled several metabolic effects putatively related to legumes intake. If confirmed in larger cohorts, our findings will support the inclusion of legumes in diets and contribute valuable new insight into the origins of associated health benefits. © 2024 The Author(s)The authors acknowledge the help of Joana Ferrão Silveira, MSc and Kimhoung Say, MSc during both the food intervention and data collection procedures, as well as the food company EUREST for providing the trial meals. This work was supported by National Funds from FCT - Fundação para a Ciência e a Tecnologia through project UIDB/50016/2020 and by the project “Transition paths to sustainable legume-based systems in Europe” (TRUE) which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 727973. HF would like to acknowledge FCT for doctoral grant ref. SFRH/BDE/132240/2017. AMG acknowledges the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 (DOI 10.54499/UIDB/50011/2020), UIDP/50011/2020 (DOI 10.54499/UIDP/50011/2020) & LA/P/0006/2020 (DOI 10.54499/LA/P/0006/2020), financed by national funds through the FCT/MCTES (PIDDAC). The NMR spectrometer is part of the National NMR Network (PTNMR) and are partially supported by Infrastructure Project Nº 022161 (co-financed by FEDER through COMPETE 2020, POCI and PORL and FCT through PIDDAC)

    Impact of splenic artery ligation after major hepatectomy on liver function, regeneration and viability

    Get PDF
    It was reported that prevention of acute portal overpressure in small-for-size livers by inflow modulation results in a better postoperative outcome. The aim is to investigate the impact of portal blood flow reduction by splenic artery ligation after major hepatectomy in a murine model. Forty-eight rats were subjected to an 85% hepatectomy or 85% hepatectomy and splenic artery ligation. Both groups were evaluated at 24, 48, 72 and 120 post-operative hours: liver function, regeneration and viability. All methods and experiments were carried out in accordance with Coimbra University guidelines. Splenic artery ligation produces viability increase after 24 h, induces a relative decrease in oxidative stress during the first 48 hours, allows antioxidant capacity increment after 24 h, which is reflected in a decrease of half-time normalized liver curve at 48 h and at 72 h and in an increase of mitotic index between 48 h and 72 h. Splenic artery ligation combined with 85% hepatectomy in a murine model, allows portal inflow modulation, promoting an increase in hepatocellular viability and regeneration, without impairing the function, probably by inducing a less marked elevation of oxidative stress at first 48 hours

    Profiling the circulating miRnome reveals a temporal regulation of the bone injury response

    Get PDF
    Bone injury healing is an orchestrated process that starts with an inflammatory phase followed by repair and remodelling of the bone defect. The initial inflammation is characterized by local changes in immune cell populations and molecular mediators, including microRNAs (miRNAs). However, the systemic response to bone injury remains largely uncharacterized. Thus, this study aimed to profile the changes in the plasma miRnome after bone injury and determine its biological implications. Methods: A rat model of femoral bone defect was used, and animals were evaluated at days 3 and 14 after injury. Non-operated (NO) and sham operated animals were used as controls. Blood and spleen were collected and peripheral blood mononuclear cells (PBMC) and plasma were separated. Plasma miRnome was determined by RT-qPCR array and bioinformatics Ingenuity pathway analysis (IPA) was performed. Proliferation of bone marrow mesenchymal stem/stromal cells (MSC) was evaluated by Ki67 staining and high-throughput cell imaging. Candidate miRNAs were evaluated in splenocytes by RT-qPCR, and proteins found in the IPA analysis were analysed in splenocytes and PBMC by Western blot. Results: Bone injury resulted in timely controlled changes to the miRNA expression profile in plasma. At day 3 there was a major down-regulation of miRNA levels, which was partially recovered by day 14 post-injury. Interestingly, bone injury led to a significant up-regulation of let-7a, let-7d and miR-21 in plasma and splenocytes at day 14 relative to day 3 after bone injury, but not in sham operated animals. IPA predicted that most miRNAs temporally affected were involved in cellular development, proliferation and movement. MSC proliferation was analysed and found significantly increased in response to plasma of animals days 3 and 14 post-injury, but not from NO animals. Moreover, IPA predicted that miRNA processing proteins Ago2 and Dicer were specifically inhibited at day 3 post-injury, with Ago2 becoming activated at day 14. Protein levels of Ago2 and Dicer in splenocytes were increased at day 14 relative to day 3 post-bone injury and NO animals, while in PBMC, levels were reduced at day 3 (albeit Dicer was not significant) and remained low at day 14. Ephrin receptor B6 followed the same tendency as Ago2 and Dicer, while Smad2/3 was significantly decreased in splenocytes from day 14 relative to NO and day 3 post-bone injury animals. Conclusion: Results show a systemic miRNA response to bone injury that is regulated in time and is related to inflammation resolution and the start of bone repair/regeneration, unravelling candidate miRNAs to be used as biomarkers in the monitoring of healthy bone healing and as therapeutic targets for the development of improved bone regeneration therapies.This work was funded by project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and AO Foundation-Switzerland (project S-15-83S). AMS, MIA, CC and JHT were supported by FCT-Fundação para a Ciência e a Tecnologia, through fellowships SFRH/BD/ 85968/2012, SFRH/BPD/91011/2012, SFRH/BDP/ 87071/2012 and SFRH/BD/112832/2015, respecttively. Work in Dr. Calin's laboratory is supported by National Institutes of Health (NIH/NCATS) grant UH3TR00943-01 through the NIH Common Fund, Office of Strategic Coordination (OSC), the NIH/NCI grant 1R01CA182905-01, a U54 grant-UPR/MDACC Partnership for Excellence in Cancer Research 2016 Pilot Project, a Team DOD (CA160445P1) grant, a Ladies Leukemia League grant, a CLL Moonshot Flagship project, a SINF 2017 grant, and the Estate of C. G. Johnson, J
    corecore