36 research outputs found

    Can this be considered a Fondaparinux-induced Thrombocytopenia?

    Get PDF
    We present a case of an old woman with previously documented heparin-induced thrombocytopenia (HIT), treated with fondaparinux, who presented with thrombocytopenia and venous thrombosis after exposure to a preventive dose of fondaparinux during orthopaedic surgery. Any accidental exposure to heparin was avoided. Other causes of thrombocytopenia were excluded and antigenic tests combined with clinical probability made a diagnosis of HIT likely. Can this be considered a possible case of fondaparinux-related HIT, despite the intense and early decrease in platelets, as usually happens in rapid-onset HIT, and the fact that previous exposure to fondaparinux had occurred 5 months previously

    Macular Microcysts in Mitochondrial Optic Neuropathies: Prevalence and Retinal Layer Thickness Measurements.

    Get PDF
    PurposeTo investigate the thickness of the retinal layers and to assess the prevalence of macular microcysts (MM) in the inner nuclear layer (INL) of patients with mitochondrial optic neuropathies (MON).MethodsAll patients with molecularly confirmed MON, i.e. Leber's Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), referred between 2010 and 2012 were enrolled. Eight patients with MM were compared with two control groups: MON patients without MM matched by age, peripapillary retinal nerve fiber layer (RNFL) thickness, and visual acuity, as well as age-matched controls. Retinal segmentation was performed using specific Optical coherence tomography (OCT) software (Carl Zeiss Meditec). Macular segmentation thickness values of the three groups were compared by one-way analysis of variance with Bonferroni post hoc corrections.ResultsMM were identified in 5/90 (5.6%) patients with LHON and 3/58 (5.2%) with DOA. The INL was thicker in patients with MON compared to controls regardless of the presence of MM [133.1±7μm vs 122.3±9μm in MM patients (p<0.01) and 128.5±8μm vs. 122.3±9μm in no-MM patients (p<0.05)], however the outer nuclear layer (ONL) was thicker in patients with MM (101.4±1mμ) compared to patients without MM [77.5±8mμ (p<0.001)] and controls [78.4±7mμ (p<0.001)]. ONL thickness did not significantly differ between patients without MM and controls.ConclusionThe prevalence of MM in MON is low (5-6%), but associated with ONL thickening. We speculate that in MON patients with MM, vitreo-retinal traction contributes to the thickening of ONL as well as to the production of cystic spaces

    Insight into Hypoxia Stemness Control

    Get PDF
    Recently, the research on stemness and multilineage differentiation mechanisms has greatly increased its value due to the potential therapeutic impact of stem cell-based approaches. Stem cells modulate their self-renewing and differentiation capacities in response to endogenous and/or extrin- sic factors that can control stem cell fate. One key factor controlling stem cell phenotype is oxygen (O2). Several pieces of evidence demonstrated that the complexity of reproducing O2 physiological tensions and gradients in culture is responsible for defective stem cell behavior in vitro and after transplantation. This evidence is still worsened by considering that stem cells are conventionally incubated under non-physiological air O2 tension (21%). Therefore, the study of mechanisms and signaling activated at lower O2 tension, such as those existing under native microenvironments (referred to as hypoxia), represent an effective strategy to define if O2 is essential in preserving naïve stemness potential as well as in modulating their differentiation. Starting from this premise, the goal of the present review is to report the status of the art about the link existing between hypoxia and stemness providing insight into the factors/molecules involved, to design targeted strategies that, recapitulating naïve O2 signals, enable towards the therapeutic use of stem cell for tissue engineering and regenerative medicine

    Intelligenza artificiale e sicurezza: opportunità, rischi e raccomandazioni

    Get PDF
    L'IA (o intelligenza artificiale) è una disciplina in forte espansione negli ultimi anni e lo sarà sempre più nel prossimo futuro: tuttavia è dal 1956 che l’IA studia l’emulazione dell’intelligenza da parte delle macchine, intese come software e in certi casi hardware. L’IA è nata dall’idea di costruire macchine che - ispirandosi ai processi legati all’intelligenza umana - siano in grado di risolvere problemi complessi, per i quali solitamente si ritiene che sia necessario un qualche tipo di ragionamento intelligente. La principale area di ricerca e applicazione attuale dell’IA è il machine learning (algoritmi che imparano e si adattano in base ai dati che ricevono), che negli ultimi anni ha trovato ampie applicazioni grazie alle reti neurali (modelli matematici composti da neuroni artificiali) che a loro volta hanno consentito la nascita del deep learning (reti neurali di maggiore complessità). Appartengono al mondo dell’IA anche i sistemi esperti, la visione artificiale, il riconoscimento vocale, l’elaborazione del linguaggio naturale, la robotica avanzata e alcune soluzioni di cybersecurity. Quando si parla di IA c'è chi ne è entusiasta pensando alle opportunità, altri sono preoccupati poiché temono tecnologie futuristiche di un mondo in cui i robot sostituiranno l'uomo, gli toglieranno il lavoro e decideranno al suo posto. In realtà l'IA è ampiamente utilizzata già oggi in molti campi, ad esempio nei cellulari, negli oggetti smart (IoT), nelle industry 4.0, per le smart city, nei sistemi di sicurezza informatica, nei sistemi di guida autonoma (drive o parking assistant), nei chat bot di vari siti web; questi sono solo alcuni esempi basati tutti su algoritmi tipici dell’intelligenza artificiale. Grazie all'IA le aziende possono avere svariati vantaggi nel fornire servizi avanzati, personalizzati, prevedere trend, anticipare le scelte degli utenti, ecc. Ma non è tutto oro quel che luccica: ci sono talvolta problemi tecnici, interrogativi etici, rischi di sicurezza, norme e legislazioni non del tutto chiare. Le organizzazioni che già adottano soluzioni basate sull’IA, o quelle che intendono farlo, potrebbero beneficiare di questa pubblicazione per approfondirne le opportunità, i rischi e le relative contromisure. La Community for Security del Clusit si augura che questa pubblicazione possa fornire ai lettori un utile quadro d’insieme di una realtà, come l’intelligenza artificiale, che ci accompagnerà sempre più nella vita personale, sociale e lavorativa.AI (or artificial intelligence) is a booming discipline in recent years and will be increasingly so in the near future.However, it is since 1956 that AI has been studying the emulation of intelligence by machines, understood as software and in some cases hardware. AI arose from the idea of building machines that-inspired by processes related to human intelligence-are able to solve complex problems, for which it is usually believed that some kind of intelligent reasoning is required. The main current area of AI research and application is machine learning (algorithms that learn and adapt based on the data they receive), which has found wide applications in recent years thanks to neural networks (mathematical models composed of artificial neurons), which in turn have enabled the emergence of deep learning (neural networks of greater complexity). Also belonging to the AI world are expert systems, computer vision, speech recognition, natural language processing, advanced robotics and some cybersecurity solutions. When it comes to AI there are those who are enthusiastic about it thinking of the opportunities, others are concerned as they fear futuristic technologies of a world where robots will replace humans, take away their jobs and make decisions for them. In reality, AI is already widely used in many fields, for example, in cell phones, smart objects (IoT), industries 4.0, for smart cities, cybersecurity systems, autonomous driving systems (drive or parking assistant), chat bots on various websites; these are just a few examples all based on typical artificial intelligence algorithms. Thanks to AI, companies can have a variety of advantages in providing advanced, personalized services, predicting trends, anticipating user choices, etc. But not all that glitters is gold: there are sometimes technical problems, ethical questions, security risks, and standards and legislation that are not entirely clear. Organizations already adopting AI-based solutions, or those planning to do so, could benefit from this publication to learn more about the opportunities, risks, and related countermeasures. Clusit's Community for Security hopes that this publication will provide readers with a useful overview of a reality, such as artificial intelligence, that will increasingly accompany us in our personal, social and working lives

    Optimal placement of PZT actuators for the control of beam dynamics

    No full text
    The dynamics of a flexural beam actuated by induced strain surface bonded (piezoelectric) actuators is considered. The bending moment produced by the single actuator is evaluated by means of the pin-force model. A modal approach is then used to build special dynamic influence functions which explicitly account for the size and the position of the actuator. Simple optimal geometrical conditions are then obtained and illustrated fur several cases with different boundary conditions

    MULTIMEDIA TOOL FOR WWER TRAINING

    No full text
    The Institute for Energy and Transport of the Joint Research Centre (JRC) of the European Commission, jointly with the International Atomic Energy Agency (IAEA), have developed an innovative multimedia knowledge package which is based on systematically collected and consolidated knowledge of top-experts in WWER (i.e. the Russian version of a pressurised water reactor) Reactor Pressure Vessel (RPV) Embrittlement and is meant to support training in the field. The tool is addressed to nuclear engineers and researcher who need to be trained on WWER RPV Embrittlement issues. The modules provide very compact knowledge; an expert is recorded while giving a lecture (usually composed of 10-20 topic related questions answered) and his speech is subtitled. The presentation is powered with eye-catching animations that make simpler the learning process and that attract the user attention. At the end of each lecture the trainee can test his understanding on the topic with a multiple-choice questionnaire and receives a score based on his performance. A powerful search engine is built in the package to ensure the easy navigation across all Modules in, text, video and sound. These multimedia modules are designed as an on-line resource and include the possibility to easily share and discuss on social medias (i.e. twitter, Facebook, etc.) the selected presentation/slide. The package is completed and programmed in HTML 5 language to allow high flexibility and make the content browsable also on tablets and phones. For classroom training an offline version can be generated.JRC.F.4-Nuclear Reactor Integrity Assessment and Knowledge Managemen
    corecore