722 research outputs found

    Igneous Layering, Fractional Crystallization and Growth of Granitic Plutons: the Dolbel Batholith in SW Niger

    Get PDF
    This study reassesses the development of compositional layering during the growth of granitic plutons, with emphasis on fractional crystallization and its interaction with both injection and inflation-related deformation. The Dolbel batholith (SW Niger) consists of 14, kilometre-sized plutons emplaced by pulsed magma inputs. Each pluton has a coarse-grained core and a peripheral layered series. Rocks consist of albite (An≤11), K-feldspar (Or96-99, Ab1-4), quartz, edenite (XMg = 0·37-0·55), augite (XMg = 0·65-0·72) and accessories (apatite, titanite and Fe-Ti-oxides). Whole-rock compositions are metaluminous, sodic (K2O/Na2O = 0·49-0·62) and iron-rich [FeOtot/(FeOtot + MgO) = 0·65-0·82]. The layering is present as size-graded and modally graded, sub-vertical, rhythmic units. Each unit is composed of three layers, which are, towards the interior: edenite ± plagioclase (Ca/p), edenite + plagioclase + augite + quartz (Cq), and edenite + plagioclase + augite + quartz + K-feldspar (Ck). All phases except quartz show zoned microstructures consisting of external intercumulus overgrowths, a central section showing oscillatory zoning and, in the case of amphibole and titanite, complexly zoned cores. Ba and Sr contents of feldspars decrease towards the rims. Plagioclase crystal size distributions are similar in all units, suggesting that each unit experienced a similar thermal history. Edenite, characteristic of the basal Ca/p layer, is the earliest phase to crystallize. Microtextures and phase diagrams suggest that edenite cores may have been brought up with magma batches at the site of emplacement and mechanically segregated along the crystallized wall, whereas outer zones of the same crystals formed in situ. The subsequent Cq layers correspond to cotectic compositions in the Qz-Ab-Or phase diagram at PH2O = 5 kbar. Each rhythmic unit may therefore correspond to a magma batch and their repetition to crystallization of recurrent magma recharges. Microtextures and chemical variations in major phases allow four main crystallization stages to be distinguished: (1) open-system crystallization in a stirred magma during magma emplacement, involving dissolution and overgrowth (core of edenite and titanite crystals); (2) in situ fractional crystallization in boundary layers (Ca/p and Cq layers); (3) equilibrium ‘en masse' eutectic crystallization (Ck layers); (4) compaction and crystallization of the interstitial liquid in a highly crystallized mush (e.g. feldspar intercumulus overgrowths). It is concluded that the formation of the layered series in the Dolbel plutons corresponds principally to in situ differentiation of successive magma batches. The variable thickness of the Ck layers and the microtextures show that crystallization of a rhythmic unit stops and it is compacted when a new magma batch is injected into the chamber. Therefore, assembly of pulsed magma injections and fractional crystallization are independent, but complementary, processes during pluton constructio

    Igneous Layering, Fractional Crystallization and Growth of Granitic Plutons: the Dolbel Batholith in SW Niger

    Get PDF
    This study reassesses the development of compositional layering during the growth of granitic plutons, with emphasis on fractional crystallization and its interaction with both injection and inflation-related deformation. The Dolbel batholith (SW Niger) consists of 14, kilometre-sized plutons emplaced by pulsed magma inputs. Each pluton has a coarse-grained core and a peripheral layered series. Rocks consist of albite (An≤11), K-feldspar (Or96-99, Ab1-4), quartz, edenite (XMg = 0·37-0·55), augite (XMg = 0·65-0·72) and accessories (apatite, titanite and Fe-Ti-oxides). Whole-rock compositions are metaluminous, sodic (K2O/Na2O = 0·49-0·62) and iron-rich [FeOtot/(FeOtot + MgO) = 0·65-0·82]. The layering is present as size-graded and modally graded, sub-vertical, rhythmic units. Each unit is composed of three layers, which are, towards the interior: edenite ± plagioclase (Ca/p), edenite + plagioclase + augite + quartz (Cq), and edenite + plagioclase + augite + quartz + K-feldspar (Ck). All phases except quartz show zoned microstructures consisting of external intercumulus overgrowths, a central section showing oscillatory zoning and, in the case of amphibole and titanite, complexly zoned cores. Ba and Sr contents of feldspars decrease towards the rims. Plagioclase crystal size distributions are similar in all units, suggesting that each unit experienced a similar thermal history. Edenite, characteristic of the basal Ca/p layer, is the earliest phase to crystallize. Microtextures and phase diagrams suggest that edenite cores may have been brought up with magma batches at the site of emplacement and mechanically segregated along the crystallized wall, whereas outer zones of the same crystals formed in situ. The subsequent Cq layers correspond to cotectic compositions in the Qz-Ab-Or phase diagram at PH2O = 5 kbar. Each rhythmic unit may therefore correspond to a magma batch and their repetition to crystallization of recurrent magma recharges. Microtextures and chemical variations in major phases allow four main crystallization stages to be distinguished: (1) open-system crystallization in a stirred magma during magma emplacement, involving dissolution and overgrowth (core of edenite and titanite crystals); (2) in situ fractional crystallization in boundary layers (Ca/p and Cq layers); (3) equilibrium ‘en masse' eutectic crystallization (Ck layers); (4) compaction and crystallization of the interstitial liquid in a highly crystallized mush (e.g. feldspar intercumulus overgrowths). It is concluded that the formation of the layered series in the Dolbel plutons corresponds principally to in situ differentiation of successive magma batches. The variable thickness of the Ck layers and the microtextures show that crystallization of a rhythmic unit stops and it is compacted when a new magma batch is injected into the chamber. Therefore, assembly of pulsed magma injections and fractional crystallization are independent, but complementary, processes during pluton constructio

    Intrusive equivalents of flood volcanics: evidence from petrology of xenoliths in Quaternary Tana basanites

    Get PDF
    The Injibara Quaternary basanites enclose a variety of xenoliths spanning in composition from peridotite through pyroxenite and gabbro to granite. This study focuses on the pyroxenite, gabbro and granite xenoliths. The pyroxenite xenoliths (enstatite + diopside + olivine ± spinel ± plagioclase ± ilmenite ± paragasite) are diverse, including olivine-orthopyroxenite, olivine-clinopyroxenite and websterite. They represent a suite of crystal cumulates from basalts with tholeiitic affinity evolving by polybaric crystal fractionation processes, or alternatively they may be related to chemical diversification of parental magma. The gabbro xenoliths, containing widely varying modal proportions of plagioclase, augite, enstatite, olivine and ilmenite, appear to be fragments of cumulate plutonic rocks, fractionated from tholeiitic basalts at high-level. They often show reaction textures, with a vermicular intergrowth of smaller augite, plagioclase and a chemically complex opaque phase composition embedded in glass from orthopyroxene. The granitic xenoliths contain quartz and two distinct feldspars–a sodic plagioclase and a potassic alkali feldspar– coprecipitated from the melt; accompanying mafic minerals are hydrous biotite and muscovite. This suggests that such granite magmas crystallized under water-saturated condition (PH2O = 5 kbar). Keywords/phrases: Cumulate, Ethiopia, Injibara, tholeiitc basalt, xenolith SINET: Ethiopian Journal of Science Vol.26(2) 2003: 93-10

    Lesion mapping the four-factor structure of emotional intelligence

    Get PDF
    Frontiers in Human Neuroscience 9 (2015): 649 This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permissionEmotional intelligence (EI) refers to an individual’s ability to process and respond to emotions, including recognizing the expression of emotions in others, using emotions to enhance thought and decision making, and regulating emotions to drive effective behaviors. Despite their importance for goal-directed social behavior, little is known about the neural mechanisms underlying specific facets of EI. Here, we report findings from a study investigating the neural bases of these specific components for EI in a sample of 130 combat veterans with penetrating traumatic brain injury. We examined the neural mechanisms underlying experiential (perceiving and using emotional information) and strategic (understanding and managing emotions) facets of EI. Factor scores were submitted to voxel-based lesion symptom mapping to elucidate their neural substrates. The results indicate that two facets of EI (perceiving and managing emotions) engage common and distinctive neural systems, with shared dependence on the social knowledge network, and selective engagement of the orbitofrontal and parietal cortex for strategic aspects of emotional information processing. The observed pattern of findings suggests that sub-facets of experiential and strategic EI can be characterized as separable but related processes that depend upon a core network of brain structures within frontal, temporal and parietal cortexThis work was supported by funding from the US National Institute of Neurological Disorders and Stroke intramural research program and a project grant from the US Army Medical Research and Materiel Command administered by the Henry M. Jackson Foundation (Vietnam Head Injury Study Phase III: a 30-year post-injury follow-up study, grant number DAMD17-01-1-0675). R. Colom was supported by grant PSI2010-20364 from Ministerio de Ciencia e Innovación [Ministry of Science and Innovation, Spain] and CEMU-2012-004 [Universidad Autonoma de Madrid

    Feasibility and performances of compressed-sensing and sparse map-making with Herschel/PACS data

    Full text link
    The Herschel Space Observatory of ESA was launched in May 2009 and is in operation since. From its distant orbit around L2 it needs to transmit a huge quantity of information through a very limited bandwidth. This is especially true for the PACS imaging camera which needs to compress its data far more than what can be achieved with lossless compression. This is currently solved by including lossy averaging and rounding steps on board. Recently, a new theory called compressed-sensing emerged from the statistics community. This theory makes use of the sparsity of natural (or astrophysical) images to optimize the acquisition scheme of the data needed to estimate those images. Thus, it can lead to high compression factors. A previous article by Bobin et al. (2008) showed how the new theory could be applied to simulated Herschel/PACS data to solve the compression requirement of the instrument. In this article, we show that compressed-sensing theory can indeed be successfully applied to actual Herschel/PACS data and give significant improvements over the standard pipeline. In order to fully use the redundancy present in the data, we perform full sky map estimation and decompression at the same time, which cannot be done in most other compression methods. We also demonstrate that the various artifacts affecting the data (pink noise, glitches, whose behavior is a priori not well compatible with compressed-sensing) can be handled as well in this new framework. Finally, we make a comparison between the methods from the compressed-sensing scheme and data acquired with the standard compression scheme. We discuss improvements that can be made on ground for the creation of sky maps from the data.Comment: 11 pages, 6 figures, 5 tables, peer-reviewed articl

    Ascending aortic remodelling in Fabry disease after long-term enzyme replacement therapy.

    Get PDF
    Previous cross-sectional studies reported a high prevalence of ascending aorta dilations/aneurysms in male adults with Fabry disease, independently of cardiovascular risk factors. To characterise the remodelling of the ascending aorta in classic Fabry disease under long-term enzyme replacement therapy. Diameter of the ascending aorta was measured with magnetic resonance imaging at the sino-tubular junction (STJ), and proximal (pAsAo), and distal ascending aorta (dAsAo) at baseline, and after 5 and 10 years of enzyme replacement therapy in 15 adult Fabry patients (10 males; 5 females). Over a mean follow-up of 9.5 years, the annual expansion rates measured in 10 males with Fabry disease were 0.41 ± 0.16, 0.36 ± 0.25 and 0.41 ± 0.26 mm/y at the STJ, pAsAo and dAsAo, respectively. Expansion rate at the pAsAo level in male patients was significantly higher than the expected expansion projected from theoretical normal values: 0.36 ± 0.25 vs 0.13 ± 0.05, p = 0.017. In 5 females, the annual expansion rates at the STJ, pAsAo and dAsAo were 0.14 ± 0.11, 0.21 ± 0.18 and 0.26 ± 0.24 mm/y, respectively. There was no significant difference from the projected normal expansion rate at the level of the pAsAo: 0.21 ± 0.18 vs 0.13 ± 0.04, p = 0.39. Our data suggest that the remodelling of the ascending aorta is more pronounced in male patients with Fabry disease under long-term enzyme replacement therapy compared with the progression observed in a large population study

    Optical surface waves on one-dimensional photonic crystals: investigation of loss mechanisms and demonstration of centimeter-scale propagation

    Full text link
    It has been predicted that optical surface waves at interfaces that separate purely dielectric media should be able to propagate over long distances, particularly over distances greater than possible with surface plasmon polaritons. Despite numerous studies, there has been no report of such an observation, and an estimate of the propagation length achievable with dielectric optical surface waves is yet to be provided. In this work, we focus on the propagation properties of optical modes supported at the free surface of a one-dimensional photonic crystal. The contributions of intrinsic and extrinsic loss mechanisms are discussed. The developed understanding is applied to the design of structures that are optimized to support long propagating optical surface waves. We experimentally demonstrate, for the first time, the existence of optical surface waves capable of propagating over centimeter-scale distances in the visible spectral range. This result opens new perspectives for the use of optical surface waves in integrated optics and for light-matter interactions at interfaces.Comment: 11 pages, 4 figure

    On peak phenomena for non-commutative HH^\infty

    Full text link
    A non-commutative extension of Amar and Lederer's peak set result is given. As its simple applications it is shown that any non-commutative HH^\infty-algebra H(M,τ)H^\infty(M,\tau) has unique predual,and moreover some restriction in some of the results of Blecher and Labuschagne are removed, making them hold in full generality.Comment: final version (the presentation of some part is revised and one reference added
    corecore