28 research outputs found

    Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies

    Get PDF
    Nowadays, bioactive glasses (BGs) are mainly used to improve and support the healing process of osseous defects deriving from traumatic events, tumor removal, congenital pathologies, implant revisions, or infections. In the past, several approaches have been proposed in the replacement of extensive bone defects, each one with its own advantages and drawbacks. As a result, the need for synthetic bone grafts is still a remarkable clinical challenge since more than 1 million bone-graft surgical operations are annually performed worldwide. Moreover, recent studies show the effectiveness of BGs in the regeneration of soft tissues, too. Often, surgical criteria do not match the engineering ones and, thus, a compromise is required for getting closer to an ideal outcome in terms of good regeneration, mechanical support, and biocompatibility in contact with living tissues. The aim of the present review is providing a general overview of BGs, with particular reference to their use in clinics over the last decades and the latest synthesis/processing methods. Recent advances in the use of BGs in tissue engineering are outlined, where the use of porous scaffolds is gaining growing importance thanks to the new possibilities given by technological progress extended to both manufacturing processes and functionalization techniques

    Experiences from a winter school on landscape agronomy: Stakes, difficulties, perspectives

    Full text link
    International audienceIn the latest fifteen years, agronomic research has shown a growing interest for studies which link farm or field scale to landscape scale. Thus, agronomy is called to renew its research questions and methodologies, and as well its educational programmes. In this context, some French and Italian researchers interested in these topics, coming from different scientific fields but sharing interests on landscape scale issues in research and higher education, decided to join their efforts around a common one-week educational programme on Landscape Agronomy for undergraduate and PhD students. Their aim has been to develop a new form of knowledge transfer and application on Landscape Agronomy approaches to students of SSSA-Pisa (IT) and of the PhD School of ABIES-AgroParisTech-Paris (FR). The educational programme consisted of three phases : 1) some theoretical contributions supported by presentations on : issues regarding agriculture and farming practices at landscape level, main approaches on environmental functions of agriculture, changes in farmers practices driven by environmental questions,spatial organization of agricultural activities, role of farming in ecological dynamics, identification of complementarities among agro-environmental functions, environmental impacts of cropping systems,biodiversity influence on agro-ecosystem functions and vice-versa ; 2) two case-studies: a macro level one(at landscape scale) to analyse the role of agriculture on landscape dynamics, and a micro level one (at farm scale) to analyse farming practices and their environmental impacts ; 3) a final evaluation of the educational programme based on : contents of oral presentations on fieldwork results, global evaluation of the educational programme contents by all the participants, each individual ex-post analysis of fieldwork results. The evaluation of the students and teachers underlines benefits, requests and perspectives for education in landscape agronomy. Furthermore, this experience stimulated a collective conceptual and methodological debate that confirmed the necessity to favour and organise experience exchanges on researching and learning in landscape agronomy

    LEGU-MED: Developing biodiversity-based agriculture with legume cropping systems in the mediterranean basin

    Get PDF
    Environmental degradation and the decrease of ecosystem service provision are currently of major concern, with current agricultural systems being a major driver. To meet our future environmental and sustainability targets a transformation of the agro-food systems and current agricultural value chain are crucial. One approach to redesign farming systems is the concept of biodiversity-based agriculture (BBA) which relies on sustainable diversification of biological components and their natural interactions in farming systems to maximize fertility, productivity, and resilience to external perturbations. Despite minimizing anthropogenic inputs, BBA is not yet able to meet all beneficial environmental objectives. BBA applied in the Mediterranean basin requires urgent innovation in approaches, methodologies, and models for small-holder traditional farming systems to ensure a stable provision of ecosystem services and better resilience to environmental stresses linked to climate change. Legumes are the backbone of the Mediterranean agro-ecosystems from ancient times, but their unique and wide biodiversity was not sufficiently valorized, especially by North-African countries. Here, we present LEGU-MED, a three-year international project funded by PRIMA initiative 2019. An international consortium was established involving five universities, 5 research institutes, and one private company from 8 countries: Italy, Germany, Spain, Algeria, Tunisia, Turkey, Lebanon, and Croatia. The main objective of this project is to put forward an international and well-integrated plan to valorize the legume agrobiodiversity of the Mediterranean in biodiversity-based farming systems and consequently enhance agro-ecosystem functions and services in the Mediterranean basin. The successful completion of LEGU-MED will have the following impacts on Mediterranean legume-based farming systems: (1) improve water use efficiency, (2) reduce the use of anthropogenic inputs through the maintenance of soil fertility, (3) enhance pollination and improve ecological connectivity with flora and fauna, (4) protect close-by wildland ecosystems, (5) enhance other ecosystem services (e.g., pest, disease, and weed suppression), and (6) provide healthier and safer protein-rich food

    Metabolic changes associated with muscle expression of SOD1G93A

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder, classified into sporadic or familial forms and characterized by motor neurons death, muscle atrophy, weakness, and paralysis. Among the familial cases of ALS, approximately 20% are caused by dominant mutations in the gene coding for superoxide dismutase (SOD1) protein. Of note, mutant SOD1 toxicity is not necessarily limited to the central nervous system. ALS is indeed a multi-systemic and multifactorial disease that affects whole body physiology and induces severe metabolic changes in several tissues, including skeletal muscle. Nevertheless, whether alterations in the plasticity, heterogeneity, and metabolism of muscle fibers are the result of motor neuron degeneration or alternatively occur independently of it remain to be elucidated. To address this issue, we made use of a mouse model (MLC/SOD1G93A) that overexpresses the SOD1 mutant gene selectively in skeletal muscle. We found an alteration in the metabolic properties of skeletal muscle characterized by alteration in fiber type composition and metabolism. Indeed, we observed an alteration of muscle glucose metabolism associated with the induction of Phosphofructokinases and Pyruvate dehydrogenase kinase 4 expression. The upregulation of Pyruvate dehydrogenase kinase 4 led to the inhibition of Pyruvate conversion into Acetyl-CoA. Moreover, we demonstrated that the MLC/SOD1G93Atransgene was associated with an increase of lipid catabolism and with the inhibition of fat deposition inside muscle fibers. All together these data demonstrate that muscle expression of the SOD1G93Agene induces metabolic changes, along with a preferential use of lipid energy fuel by muscle fibers. We provided evidences that muscle metabolic alterations occurred before disease symptoms and independently of motor neuron degeneration, indicating that skeletal muscle is likely an important therapeutic target in ALS

    Metabolic Changes Associated With Muscle Expression of SOD1G93A

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder, classified into sporadic or familial forms and characterized by motor neurons death, muscle atrophy, weakness, and paralysis. Among the familial cases of ALS, approximately 20% are caused by dominant mutations in the gene coding for superoxide dismutase (SOD1) protein. Of note, mutant SOD1 toxicity is not necessarily limited to the central nervous system. ALS is indeed a multi-systemic and multifactorial disease that affects whole body physiology and induces severe metabolic changes in several tissues, including skeletal muscle. Nevertheless, whether alterations in the plasticity, heterogeneity, and metabolism of muscle fibers are the result of motor neuron degeneration or alternatively occur independently of it remain to be elucidated. To address this issue, we made use of a mouse model (MLC/SOD1G93A) that overexpresses the SOD1 mutant gene selectively in skeletal muscle. We found an alteration in the metabolic properties of skeletal muscle characterized by alteration in fiber type composition and metabolism. Indeed, we observed an alteration of muscle glucose metabolism associated with the induction of Phosphofructokinases and Pyruvate dehydrogenase kinase 4 expression. The upregulation of Pyruvate dehydrogenase kinase 4 led to the inhibition of Pyruvate conversion into Acetyl-CoA. Moreover, we demonstrated that the MLC/SOD1G93A transgene was associated with an increase of lipid catabolism and with the inhibition of fat deposition inside muscle fibers. All together these data demonstrate that muscle expression of the SOD1G93A gene induces metabolic changes, along with a preferential use of lipid energy fuel by muscle fibers. We provided evidences that muscle metabolic alterations occurred before disease symptoms and independently of motor neuron degeneration, indicating that skeletal muscle is likely an important therapeutic target in ALS

    LEGU-MED: Developing Biodiversity-Based Agriculture with Legume Cropping Systems in the Mediterranean Basin

    Get PDF
    Environmental degradation and the decrease of ecosystem service provision are currently of major concern, with current agricultural systems being a major driver. To meet our future environmental and sustainability targets a transformation of the agro-food systems and current agricultural value chain are crucial. One approach to redesign farming systems is the concept of biodiversity-based agriculture (BBA) which relies on sustainable diversification of biological components and their natural interactions in farming systems to maximize fertility, productivity, and resilience to external perturbations. Despite minimizing anthropogenic inputs, BBA is not yet able to meet all beneficial environmental objectives. BBA applied in the Mediterranean basin requires urgent innovation in approaches, methodologies, and models for small-holder traditional farming systems to ensure a stable provision of ecosystem services and better resilience to environmental stresses linked to climate change. Legumes are the backbone of the Mediterranean agro-ecosystems from ancient times, but their unique and wide biodiversity was not sufficiently valorized, especially by North-African countries. Here, we present LEGU-MED, a three-year international project funded by PRIMA initiative 2019. An international consortium was established involving five universities, 5 research institutes, and one private company from 8 countries: Italy, Germany, Spain, Algeria, Tunisia, Turkey, Lebanon, and Croatia. The main objective of this project is to put forward an international and well-integrated plan to valorize the legume agrobiodiversity of the Mediterranean in biodiversity-based farming systems and consequently enhance agro-ecosystem functions and services in the Mediterranean basin. The successful completion of LEGU-MED will have the following impacts on Mediterranean legume-based farming systems: (1) improve water use efficiency, (2) reduce the use of anthropogenic inputs through the maintenance of soil fertility, (3) enhance pollination and improve ecological connectivity with flora and fauna, (4) protect close-by wildland ecosystems, (5) enhance other ecosystem services (e.g., pest, disease, and weed suppression), and (6) provide healthier and safer protein-rich food. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Inter-society consensus for the use of inhaled corticosteroids in infants, children and adolescents with airway diseases

    Get PDF
    Background: In 2019, a multidisciplinary panel of experts from eight Italian scientific paediatric societies developed a consensus document for the use of inhaled corticosteroids in the management and prevention of the most common paediatric airways disorders. The aim is to provide healthcare providers with a multidisciplinary document including indications useful in the clinical practice. The consensus document was intended to be addressed to paediatricians who work in the Paediatric Divisions, the Primary Care Services and the Emergency Departments, as well as to Residents or PhD students, paediatric nurses and specialists or consultants in paediatric pulmonology, allergy, infectious diseases, and ear, nose, and throat medicine. Methods: Clinical questions identifying Population, Intervention(s), Comparison and Outcome(s) were addressed by methodologists and a general agreement on the topics and the strength of the recommendations (according to the GRADE system) was obtained following the Delphi method. The literature selection included secondary sources such as evidence-based guidelines and systematic reviews and was integrated with primary studies subsequently published. Results: The expert panel provided a number of recommendations on the use of inhaled corticosteroids in preschool wheezing, bronchial asthma, allergic and non-allergic rhinitis, acute and chronic rhinosinusitis, adenoid hypertrophy, laryngitis and laryngospasm. Conclusions: We provided a multidisciplinary update on the current recommendations for the management and prevention of the most common paediatric airways disorders requiring inhaled corticosteroids, in order to share useful indications, identify gaps in knowledge and drive future research

    Selection of Infective Arbuscular Mycorrhizal Fungal Isolates for Field Inoculation

    Get PDF
    Arbuscular mycorrhizal (AM) fungi play a key role in host plant growth and health, nutrient and water uptake, plant community diversity and dynamics. AM fungi differ in their symbiotic performance, which is the result of the interaction of two fungal characters, infectivity and efficiency. Infectivity is the ability of a fungal isolate to establish rapidly an extensive mycorrhizal symbiosis and is correlated with pre-symbiotic steps of fungal life cycle, such as spore germination and hyphal growth. Here, different AM fungal isolates were tested, with the aim of selecting infective endophytes for field inoculation. Greenhouse and microcosm experiments were performed in order to assess the ability of 12 AM fungal isolates to produce spores, colonize host roots and to perform initial steps of symbiosis establishment, such as spore germination and hyphal growth. AM fungal spore production and root colonization were significantly different among AM fungal isolates. Spore and sporocarp densities ranged from 0.8 to 7.4 and from 0.6 to 2.0 per gram of soil, respectively, whereas root colonization ranged from 2.9 to 72.2%. Percentage of spore or sporocarp germination ranged from 5.8 to 53.3% and hyphal length from 4.7 to 79.8 mm. The ordination analysis (Redundancy Analysis, RDA) showed that environmental factors explained about 60% of the whole variance and their effect on fungal infectivity variables was significant (P = 0.002). The biplot clearly showed that variables which might be used to detect infective AM fungal isolates were hyphal length and root colonization. Such analysis may allow the detection of the best parameters to select efficient AM fungal isolates to be used in agriculture
    corecore