751 research outputs found

    Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    Get PDF
    The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards

    Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    Get PDF
    The goal of this research project was to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom. The approach consists of four steps: (1) developing analytical tools (models and computer programs); (2) conducting parameterization (what if?) studies; (3) predicting the global space station EMI environment; and (4) providing a basis for modification of EMI standards

    Corner Exponents in the Two-Dimensional Potts Model

    Full text link
    The critical behavior at a corner in two-dimensional Ising and three-state Potts models is studied numerically on the square lattice using transfer operator techniques. The local critical exponents for the magnetization and the energy density for various opening angles are deduced from finite-size scaling results at the critical point for isotropic or anisotropic couplings. The scaling dimensions compare quite well with the values expected from conformal invariance, provided the opening angle is replaced by an effective one in anisotropic systems.Comment: 11 pages, 2 eps-figures, uses LaTex and eps

    Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    Get PDF
    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure—the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes—which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function

    Health equity in the New Zealand health care system: a national survey

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>In all countries people experience different social circumstances that result in avoidable differences in health. In New Zealand, Māori, Pacific peoples, and those with lower socioeconomic status experience higher levels of chronic illness, which is the leading cause of mortality, morbidity and inequitable health outcomes. Whilst the health system can enable a fairer distribution of good health, limited national data is available to measure health equity. Therefore, we sought to find out whether health services in New Zealand were equitable by measuring the level of development of components of chronic care management systems across district health boards. Variation in provision by geography, condition or ethnicity can be interpreted as inequitable.</p> <p>Methods</p> <p>A national survey of district health boards (DHBs) was undertaken on macro approaches to chronic condition management with detail on cardiovascular disease, chronic obstructive pulmonary disease, congestive heart failure, stroke and diabetes. Additional data from expert informant interviews on program reach and the cultural needs of Māori and Pacific peoples was sought. Survey data were analyzed on dimensions of health equity relevant to strategic planning and program delivery. Results are presented as descriptive statistics and free text. Interviews were transcribed and NVivo 8 software supported a general inductive approach to identify common themes.</p> <p>Results</p> <p>Survey responses were received from the majority of DHBs (15/21), some PHOs (21/84) and 31 expert informants. Measuring, monitoring and targeting equity is not systematically undertaken. The Health Equity Assessment Tool is used in strategic planning but not in decisions about implementing or monitoring disease programs. Variable implementation of evidence-based practices in disease management and multiple funding streams made program implementation difficult. Equity for Māori is embedded in policy, this is not so for other ethnic groups or by geography. Populations that conventional practitioners find hard to reach, despite recognized needs, are often underserved. Nurses and community health workers carried a disproportionate burden of care. Cultural and diversity training is not a condition of employment.</p> <p>Conclusions</p> <p>There is a struggle to put equity principles into practice, indicating will without enactment. Equity is not addressed systematically below strategic levels and equity does not shape funding decisions, program development, implementation and monitoring. Equity is not incentivized although examples of exceptional practice, driven by individuals, are evident across New Zealand.</p

    In situ Biological Dose Mapping Estimates the Radiation Burden Delivered to ‘Spared’ Tissue between Synchrotron X-Ray Microbeam Radiotherapy Tracks

    Get PDF
    Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to ‘spared’ tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30–40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies

    Diagnosing Alzheimer's Disease from Circulating Blood Leukocytes Using a Fluorescent Amyloid Probe

    Get PDF
    BACKGROUND: Toxic amyloid-β (Aβ) peptides aggregate into higher molecular weight assemblies and accumulate not only in the extracellular space, but also in the walls of blood vessels in the brain, increasing their permeability, and promoting immune cell migration and activation. Given the prominent role of the immune system, phagocytic blood cells may contact pathological brain materials. OBJECTIVE: To develop a novel method for early Alzheimer's disease (AD) detection, we used blood leukocytes, that could act as "sentinels" after trafficking through the brain microvasculature, to detect pathological amyloid by labelling with a conformationally-sensitive fluorescent amyloid probe and imaging with confocal spectral microscopy. METHODS: Formalin-fixed peripheral blood mononuclear cells (PBMCs) from cognitively healthy control (HC) subjects, mild cognitive impairment (MCI) and AD patients were stained with the fluorescent amyloid probe K114, and imaged. Results were validated against cerebrospinal fluid (CSF) biomarkers and clinical diagnosis. RESULTS: K114-labeled leukocytes exhibited distinctive fluorescent spectral signatures in MCI/AD subjects. Comparing subjects with single CSF biomarker-positive AD/MCI to negative controls, our technique yielded modest AUCs, which improved to the 0.90 range when only MCI subjects were included in order to measure performance in an early disease state. Combining CSF Aβ 42 and t-Tau metrics further improved the AUC to 0.93. CONCLUSION: Our method holds promise for sensitive detection of AD-related protein misfolding in circulating leukocytes, particularly in the early stages of disease

    In the dedicated pursuit of dedicated capital: restoring an indigenous investment ethic to British capitalism

    Get PDF
    Tony Blair’s landslide electoral victory on May 1 (New Labour Day?) presents the party in power with a rare, perhaps even unprecedented, opportunity to revitalise and modernise Britain’s ailing and antiquated manufacturing economy.* If it is to do so, it must remain true to its long-standing (indeed, historic) commitment to restore an indigenous investment ethic to British capitalism. In this paper we argue that this in turn requires that the party reject the very neo-liberal orthodoxies which it offered to the electorate as evidence of its competence, moderation and ‘modernisation’, which is has internalised, and which it apparently now views as circumscribing the parameters of the politically and economically possible

    Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al
    corecore