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ANALYSIS OF ELECTROMAGNETIC INTERFERENCE FROM
POWER SYSTEM PROCESSING AND TRANSMISSION
COMPONENTS FOR SPACE STATION FREEDOM

1 Introduction

The goal of this research project was to analyze the potential effects of
electromagnetic interference (EMI) originating from power system processing and
transmission components for Space Station Freedom. The approach consists of four
steps:

1. Develop analytical tools (models and computer programs).
2. Conduct parameterization (what if?) studies.

3. Predict the global space station EMI environment.

4. Provide a basis for modification of EMI standards.

This report along with previous interim reports constitutes the final report for
work performed during the period January 1, 1990 - June 30, 1992.

The Device Models portion of the investigation centers on the development of
computer models which can be used to predict the local electromagnetic fields for
various power system components or devices, including various transmission line
configurations. This work was summarized in previous interim reports. More
recently, there has been interest in the v x B voltage drop developed along the length
of the space station structure as a result of the motion at velocity v through the
earth’s magnetic B field. This voltage difference along the structure results in a
current in the conducting plasma surrounding the space station. An analysis of the
v x B effect, including plots of the current density distribution for a cylindrical model
of the space station, are summarized in Section 2 of this report.

The Radiation Sources portion of the investigation centers on the development
of computer models to simulate the propagation of electromagnetic waves in the
ionospheric plasma and the radiation from antennas simulating EMI sources on the
space station. This work is summarized in Section 3 of this report.



2. Device Models

1 Introduction

An electrodynamic system of the space station freedom in the earth’s geomagnetic field in
the ionosphere is shown in Fig.2.1. A cylinder type space station is moving at a speed, V.,
on its orbit surrounding the earth in the geomagnetic field, B,. The motion of the space
station through the geomagnetic field results in an electromotive force (emf), V., x B,, along
its length and causes potential drop across the space station. Because the plasma ionosphere
environment surrounding the space station is conductive, a current between the space station
and the plasma is induced. This work presents the governing differential equations of this
V. x B, problem, the formulation of the 3D finite element (3D-FE) model for this problem,
with the electric scalar potential (ESP) as the field variable, and the consequent computation
of the induced current distribution. Due to the infinite boundary of this problem, the
absorbing boundary condition (ABC) method is mentioned as one possible future work, for
dealing with this type of open boundary problems.

2 Derivation of Governing Equations

For the problem described in the previous section, the total region can be divided into two
subregions, Q;, and Q; (See Fig.2.2). Region, {1;, represents the structure of the space
station and is moving at a speed, V,, in the geomagnetic field, Fg. In region, 2;, the
conductivity &, equivalent to the plasma environment may be anisotropic. Surface, S, is
the interface boundary between region, §;, and region, (2, on which some electric field and
current density continuity conditions should be satisfied. Since the potentials will tend to
zero while the boundary, T', is extending to infinity, the asymptotic (or absorbing) boundary

conditions (ABCs) can be applied on the outer boundary, I'.

In region, §;:

Because of the V x B component, there are two kinds of electric fields in the region
Q,: an induced electric field, E;, and an external electric field, F.. The induced field, E;,
can be expressed as follows:

E. =7, xB, (1)

The external field, E., is a conservative field, so that it can be defined as follows:

E.= -V (2)



where, ¢, is an electric scalar potential (ESP) function in region, ;. The total resultant
electric field, E4, is the superposition of these two fields, that is:

E1:Ei+E¢=V,X§g—V¢1 (3)
The current density, Ji, is proportional to the total electric field intensity, E,, hence
71 = Ul—E—l = 0'1(_E—,‘ +Ee) = —01(V¢1 — (V, X Eg)) (4)

where, o, is the conductivity of region, Q;, which is homogeneous. The following current
continuity condition must be satisfied anywhere:

V-Ji=0 ()
Substituting (4) into (5), one obtains:
V- [01(Vér ~ (Vs x By))} =0 (6)

Because both oy and (V, x B,) are constant, V - [03(V, x By)] = 0, equation (6) can be
rewritten as follows:

V. [o1(Vé1)] =0 n (7)

In region, ,:

Only an external field exists. It can be defined as follows:
E,=-V¢, (8)

where, ¢, is an electric scalar potential function in region, Q2. The current density, J2, in
region, {2, can be written as follows:

Jy = 52E, (9)

where, 7, is the conductivity matrix of region, (2, resulting from the possible anisotropic
properties of this region. Using the current continuity condition again, one obtains:

V.-J,=0 (10)



Substituting (9) into (10) gives:

V.[5:E;]=0 (11)
Meanwhile, substituting (8) into (11) yields the following:

V-[32(Véa)] =0 in Q, (12)

On boundary, S:

From electromagnetic field theory, on the boundary, S, the tangential component of the
electric field should be continuous and the normal component of the current density should
also be continuous. These two continuity conditions can be written as follows:

fﬁ-df:O——»(Fg—_E_l)gzoa[—V¢2+V¢1-—V,x§g]t=0 (13)

f?-ds =0 (Ja=Ti)a =0 — [-5:Vés — 01(~Vy + V, x B,)la = 0 (14)

where, the subscripts, n and ¢ denote the normal direction and tangential direction on
boundary, S, respectively.

On boundary, I':

An m-th order asymptotic boundary condition [1] can be assumed to be satisfied on
the boundary, I'. This can be expressed as follows:

Bnga =0 (15)

where, B,, is the m—th order differential operator.

Governing Equations:

In summary, the governing equations for the (V, x B,) problem with boundary coupling
conditions and asymptotic boundary conditions are as follows:



V.E(Vé)] =0  in (17)

(Véy — Va)e = (Vs x By on S (18)

[01(V$1) = 52(Véo)ln = 1(Vy x Byl onS (19)
and

B2 =0 onT (20)

3 Finite Element Formulation

Using the Galerkin-Weighted Residual (GWR) method (2], one can obtain the integral equa-
tions equivalent to the differential equations which were derived in the previous section,
equations (16) through (20). The integral equations can be discretized by finite element
methods [2].

3.1 The Galerkin-Weighted Residual (GWR) method

Using the GWR method, the integral equations can be obtained from the partial differential
equations (16) and (17) as follows:

/m WV - (01(V1))d = 0 (21)

[ WY @:(Ve))d = 0 (22)

where, W is an arbitrary scalar weight function.

From vector calculus, one can write a vector identity as follows:

V.(fF)=fV-F+Vf-F= fV.F=V.(fF)-Vf-F (23)



where, f is any scalar function and F is any vector function. Let F = oV¢, and f = W,
one can obtain the following useful transformation from (23):

WV.(0V4)=V - (W(aV¢))— (VW) (sV9) (24)

Using the relationship shown in (24), one can rewrite (21) and (22) as follows:

[ WV (o(V41))d2 = /n V- (W(o1V)df - /Q (TW)(0:74:)d2 = 0 (25)

[ WY (@:(V4:))d0 = /n V- (W(@V4))d - /Q (VW) (ZaVa)d2 =0 (26)

From vector calculus , Gauss’ theorem gives:
/V.Fd(z:j{‘ﬁ-ds (27)
n s

where, Q is a space volume, the closed surface of which is S. The normal direction 5 is out
of the volume.

Applying Gauss’ theorem, equation (27), to (25) and (26), one can obtain the following:

(VW) - (0:V1)dD2 + fs W(0,Vy)-ds =0 (28)

-/
§ W@ve)-ds+ FWET6) 5 - [ (VW) (3:74:)d2 = 0 (29)

where, §; = —S,. The second term of the left side in (29) can be dealt with the asymptotic
boundary condition (ABC) method which will be discussed in future work and here assumed
to be zero (the nature boundary condition). That is:

]é, W(3:V2) - ds =0 (30)
Therefore one can merge equations (28) and (29) into the following:

/n (IW)- (1V41)d2 + /n (W) (BaV42)d2 = fs Won(V4) —52(V2)]nds (31)

6



Substituting the boundary condition (19) into (31) yields:
/ﬂ (TW)-(194:)d0 + /ﬂ (VW) @:V4:)d0 = fs Wor(V, x By)ads (32)
To simplifying the problem, one introduces some definitions as follows:
an1 = 01, Qlﬂz = ?2; (33)
and

dla, = é1; Pla, = ¢2 (34)

Using the above definitions, one can rewrite equation (32) as follows:

/n o (VW) (@990 = ¢ Wa(V, x B,)ads (35)

3.2 Discretization by FE Method

Define an interpolation function of the scalar potential in a finite element which has m nodes
as follows:

lm
¢° =D N;¢; (36)
=

where, N, is a shape function, and ¢; is the potential value at node j. The node numbers of
a given element are Iy, 13, -+, lm.

Let us define the weight function in (35) as follows:
W=Ni izllal%"'alm (37)

Applying (36) and (37) to (35), one can obtain the element integral function as follows:

lm

VN VN, <d9=}{ Ng(V. x B,)nd

J (VN3 TN,0)d0 = §, Nia(V. x Bylads (3)
i:llal%"'slm
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Moving the summation out of the integral, one can rewrite the previous equation as follows:

Im

>/

1=h fe

(VN:gVN,)dQ]¢; = fs _Nig(V, x By)ads

i1:11)l2$"'1lm

This relationship can be written in the matrix form as follows:

Sta1 Sig2 cct Shim b1, by,

Slpdl Stmi2 *** Slpim Dlm bi,,

Hence, the elemental FE equation can be expressed as follows:

ﬁe.ée:be

and

d)e = [¢111 ¢121 M ¢lm]t

(39)

(40)

(41)

(43)

The tangential continuity condition on the interface, S, (V¢ — V), = (V, X Eg)t,
can be considered as a potential jump distribution by which the previous FE formulations
should be modified. In the next section, the potential jump distribution will be discussed.

3.3 FE Formulations Modified by Potential Jump Distribution

On surface, S, we define the potentials as follows:

dls = é2; (p2— )]s =T

(44)

Consider an element, e, which belongs to region, {;, and on interface, 5. The total m

! ' '
nodes on element, e, are Iy, lz, -+, lm—n, I, b3y =+ 5 Ly,

8
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in which [}, {5, - -+, [, are on the interface,



S.. Meanwhile, the interpolation function in such kind of elements can be expressed as
follows:

l

lm—n
Z N; ¢13 + Z N; ¢IJ (45)
1=l —l
Because of the fact that ¢; = ¢, — T on nodes l'l, l;, TR ln, the previous equation can be

expressed as follows:

lm—n L, ln-n

ZN¢1,+ZN (25 — {ZN¢1J+2N¢2J} ZNT (46)

7=l J—l 1=h __[ _1

Applying the definition of the potentials in (34) and (44), one can rewrite the previous
equation as follows:

Im In
= > Nigi— > N,T, (47)
J=h j:l'
Im In
V¢t =3 VN;¢;— > VNT, (48)

=h i=l

For an element which belongs to region, ;, and on surface, S, one can obtain the elemental
equation as follows:

}

| L B B
Zz‘:[ /n (VN:gVN;)df)4; —E [ /n f(VN.-gVN,-)dQ]Tj = ?{S NV xBpnds 4
1= 11,12,"',lm
or
]_l / (VN:gVN,)dQ]é ]{ Nig(V, x By)ads + Z[ / (VNaVN)QIT, oo

1= 11712: "1lm
Rewriting the modified FE elemental equations in matrix form one obtains the following:
St Sz v Siim 1, b,

= | (51)

St Il Slml2 *°* Sipm ¢lm blm



where,

si = /n‘(VN.gVN,-)dQ i 5=l lgyeee b

+

i (52)

bi = -%S N;‘Q(V, X _Eg)nds + Z sijTj 1= l13l2$'“,lm1 .7 = 11111121“'7[:17
1

.t
J=11

The computation of the potential jump distribution, T, will be presented in the next section.

4 Computation of the Potential Jump Distribution

4.1 Surface Element Analysis

From equation (18), one can see that the potential jump distribution on surface, S, is
governed by the following differential equation:

VT = —(V,x By): = —Eu (53)

where, T = (¢2 — ¢1)ls

One can choose a cost functional to be minimized on boundary, S, as follows:

—_— NE‘ —_—
F(T) = /s VT + Enl?ds = 3 /s VT + B, [2ds (54)
e=1

where, NE, is the total number of the surface elements, and S° is the area of a given surface
element. Here we assume that for every element in region, {;, no more than one element
surface is on the surface, S. In this work, first order tetrahedral finite elements are chosen
and only nodes, I',m’ and n', can be on surface, S, (see Fig.2.3.).

Define an interpolation function on surface S. as follows:
T= Nl"Tll +Nm'Tml +Nn'Tn' (55)

where, Ny, N,» and N, are shape functions on S, and Ty, T,/ and T,/ are the potential

jump distribution on the nodes, ''m' and n'.

A local coordinate system (u,v,w) should be adopted (see Fig.2.3.).
T = T(u,v) = Ny(u,v)Ty + N (u,v)T,0 + N (u,v) Ty (56)

10



Here,

_C?I _ —(?&T + ON_. 0N,
Ou ~ Ou ! ou ™ ou "
aT aNl' aNm' aan
v Ov Ty + v T + ov T

Evt = Eua'u + Ev&"u

where, E, and FE, are constant.

VT =

Bu

ay +

oT ,

—a
v "

Substituting (59) and (60) into the cost functional, (54), gives:

F(T)

<[ 9%,
Z s¢l 3u
N E.

> [

NE,

Z/.

oT

—au) + (Eyby + Eya,)|*dudv

)8y + (8_ + E,)a,|*dudv

2+(

oT
7o T E

The minimization of the cost functional is as follows:

)?]dudv

OF(T) _ 0 & B_T , 0T .
oT, aTt{;/ (5~ + Eu) +(6 + E,)*]dudv
= 3 aT a 3T
& oN, ON..
_ 22/ ——+E (32 + (E+E,,) ) dude
= 0
where, 1 = 1',m',n’.
Substituting (57) and (58) into (62) yields the following:
OF(T) _ NE, 3 Nz a N 6N oN,
L, 22/ STt + e T+ B
3N 0N aN N,
H(G LTy + =5 T + 5 2Ty +E)(‘a dudy
= NXE: / aN ONy 3N aNz) (BN N, N aN ,
B Y v Iy 5ot 5
~ON.ON,, 0N, BN,,: oN, oN.
+( du Ou v o T + E® —E,+ — 50 —E,]dudv =0

11

)T,

(61)

(62)

(63)



. i ’ [
where: =1,m ,n

In the previous equation, all partial derivative terms are constant because of the nature
of the interpolation polynomials in first order elements, so that the elemental equation can

be expressed on S° as follows:

A (6N ;ONy 6N aN, LA (6N ON, aN aN., ,)T
A%N%v, Sl O 3}@ 5 BN,
Ou Ou v Gv ov

. [ ’ !
i=1,m,n

where, A is the area of the triangular element, e.

The previous equation can be expressed in matrix form as follows:

kz’z’ kl'm' kz’n’ Ty Cz’
ko koo koo || T | = Co
kn'll kn'm’ kn'n' Tﬂ' Cn'
where,

dN; BN ., ON,0N;

k= Al-5 -+ ‘)
4n? gﬁ 3”

Ci= - ,E;E + 5o
i,j= I',m n

4.2 Local Coordinate System

The local coordinate system (@, @., @), see Fig.2.3, can be calculated as follows:

lm I, 1y "y Z iy
- U~ Yy - .
By = Uply + Uyly + U4, = == = T ml 5 ml g

= T y z
Im'|  Lpv ~ Lpr ” L

Uy l mm'l'

& = U = - yt
u £ L . Ym'l
Uz m zm’l'

Tt T —
where | Yoy | = | Y —yr | and Loy = J22, 0 + 92, + 22,

Zn'l Zm' — 2

or,

FVE N a a a
) (Im' xIm) 1] % % 9
dy = Wplg + Wydy + Wy, = ==t = ——

Tt Yn'tl ZY

7 T 1 2A Tw'l' Ym't' Zm'l’

(64)

(65)

(67)

(68)

(69)



or,

Wy 1 Ym't' 20l — Yn't' Zm't’
aw = | Wy | = 2—A— e Y Y (70)
W, T 'Yt — Tt Yt
T,y z, —
. . ! ] '
where, | yry | = | yo —yr | and A is the area of the triangle Imn on surface 5
znrll an —_ zll

24 = \/(ym'l' 2 T Y Zm’l’)2 + (xn'llzm'l' ~Tnl'Zn )2 + (xm’l’yn’l’ T Yt )2 (71)

Ay, = Uzlz + Vyly + V;0; = Ay X Gy
i i i, i )
= m Y U221 T Yl 20l Ta'l'2m'l T Tl 20l T VYRt T T Ym'Y
T’y Ym't! 2!t
or,
Uz 1 (mn'l' 2l T Tt Zn'l’)zm'l' - (xmll'yn’l’ - zn'l’ym,l’)ymll’
ay = | vy (@t Yn't = Tt Y Tt = (Ym0 20t = Yn't 2t )2 |(73)

- 2ALm'l' (

Uz Yt 20t — Yn't' 2wt )ym'l' - (xn'l' Y U zn'l')mm'l'

4.3 Transformation from Global to Local Coordinates

In the global system, the surface elements are three dimensional but in the local system, they
are two dimensional. We need a transformation from the global system to the local system.
Assuming node [’ is located on the origin point in the local coordinate, one can obtain the
nodal transformation as follows:
U Uy Uy U TiT oy
i _ z v z L ) _ ll ' '

MR R (74)

Z; — Zl’

The tangential component of (V, x B,) on the surface, S., can be expressed as follows:

Eu = Evt y &u (75)
E', = _E'_vt * &., (76)
In the local coordinate system, the shape functions become two-dimensional, hence [3]:
1
Nll = 5§(pll + q’lu + T'zl'v)
N, = @‘(Pm' + gt + Tr?) (77)
Nn’ = -QZ(pn' + qn' U +r Iv)

13



and

T A (5
o _dw oft _r
Ju 27" ov 2
where
pl’ = um/‘l}nl _— un'vm’; qll = vml — 'U"I;T'll = 'u,nl —_ 'u,ml
P! = U/ Uy — UpVpts Gt = Vp! — VTt = Uy — Uy (79)
pnl = ul/vm; —_ uml'vll; qnl = v‘l — 'Um/;rnl = ‘u,ml -— ul’
Substituting (78) into (66), one obtains the following:
kyp Ky kp g Ty Cy
km'l' km'm' km’n' Tm' = Cm' (80)
kn'l' kn'm' kn'n' Tn' Cn'
where,
1
kij = E(Q.‘Q,‘ + rir;)
C,' = —q,'Eu - T‘,‘E,, (81)

P 14 [ /
,j= I,m,n

5 FE Formulation Using First-Order Tetrahedral El-
ements

5.1 Shape Function

Fig.2.4. shows a first order tetrahedral finite element by which we can construct an interpo-
lation function as follows:

#(z,y,2) = on + @z + azy + a4z (82)
d(zi, yi, 2:) = b i=1m,n,s
On nodes, {,m,n, s, the interpolation functions are as follows:
oy ez oy touzm =@
ar +aTm +a3ym +0UZm = Om (83)
ay +aT, +azyn +a4zn = ¢n
oy Fopz, +o3y, touz =@,

14



or, in matrix form:

Lz w a % é
1 Tm Ym 2Zm az | | ¥m
1 Zn Yn 2n az | | ¢n
1 Ts Ys Zs Oy ¢s

The interpolation coefficients, oy, a3, a3 and a4, can be solved for as follows:

231
(s3] _
Qas -
271
a; am
where, b bm
Cl Cm
di dm
Thus:
$(z,y,2)
or,
$(z,y, 2)

Here, the shape

N =
N, =
N, =
N, =
where,

Tm

a=| T
Iy

i
An = [ Tm
Ty

-1

Lz oy oa Tl
l Tm Ym Zm bm
1l 2o Yn 2za Pn
1 Ty Ys Zs ¢s
an G, 1z w
by b | |1 Tm Ym
etn ¢ | |1 Ta un
d, d, 1 z, ys

=1 + T + a3y + Q42

]
Zm
Zn
Zs

= (al¢1 + am¢m + an¢n + as¢s)
+(bl¢l + bmd’m + bn¢n + bsQSs)m
+(Cl¢l + Cm¢m + Cn¢n + Ca¢a)y
+(dl¢l + dm¢m + dn¢n + ds¢3)z

= Ni¢1 + Nndpm + Npnprn + Ny s

=(a+ bz +ay+ diz)h

+(am + bz + cmY + dm2)Pm
+(an + bnz + oy + dn2)dn

+(a, + b,l" + ¢,y + dsz)¢s

functions are as follows:

(a1 + biz + qy + d12)
(am + b + cmy + dm2)
(an + bnZ + Cay + dnz)
(as + byz + ¢,y + d,2)

Ym 2Zm
Yn 2n |[/6V;
y’ z’
/1
Ym Zm /6V1
Ys Zs

am=—’

a,z—‘
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Ty
Tn
Ty

Zy
Im
Ln

(84)
Qm Qp Qg ¢l
b‘m bﬂ bl ¢m
Cm Cn Cs én (85)
dm dn d, ?s
(86)
(87)
(88)
Yoz
Yn 2n |[/6V;
Ys 2s
y 2y
Ym 2Zm /6V;
Yn 2n




1 Ym Zm 1 noz
bi=—|1 yn 2z, |/6V; b =|1 yn 2za |/6V;
1y, =z 1y, 2z
L wi =z L w oz
bp=—|1 ym 2zm |/6V; by=|1 ym 2zm |/6V;

1 y, 2z 1 yn 2za

1l Tm 2Zm 1 z1 2z
a=1|1 z, 2z |/6V; em=—|1 zo 2z, |/6V;

1 Ty Zy 1 Ty 24

1 o1 2z 1l = =
en=1|1 zm zm |/6V; cs=—|1 zm zm |/6V;

1 z, =z, 1 2z, 2z,

1 Tm Ym Lz w
di=—|1 z, yn |/6V; dn=|1 z, y. |/6V;
1 z, vy, 1 z, vy,

1 o w 1z, w
do=—=|1 zm ym |/6V; dy=1|1 zm ym |/6V;
1 z, y,s l z, yn
and,
ON; . ON; . ON; . . . .
VN, = 52 0 + 99 ay + 5, 0 = (biar + 1oy + did;)
ON,, ON., ONn,
VNm = A:z: a Az = mA:t a mAz
6ma+ 3y ay + 57 (bnz + Cmby + dma.)
ON, . ON, . ON, . R . .
VNa = —"da + g vt (bnéz + Cndy + dna.
ON, ON, ON,, . . .
VN, = 2 az + o9 ay + 3 a, = (byds + cdy + dsa;)
1Lzt w oz
where, 6V = | © Zm Ym Zm
1 o Yn 2n
1 z, ys =z
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5.2 FE Formulation

Using the first order tetrahedral element, one can discretize elemental equation, (52), as
follows:

S — / {0’ OGN, ON; to ON; BNj Lo JdN,; ON;
Y Jqet T 9z Oz Y9y 9y 28z Oz

}dQ

= (O'zb,bj + oycic; + O’Zd,dj) -V

bg = 0’1(V, X B-g)n/‘ N,‘dS + Z S,'|_‘,"Tj’ (93)
A.5'1 jl= l,ml’"l"l
= 0’1(‘_/, X Fg)"_% + Z S‘.JITJ,
]I=ll'ml'nl'sl

1,7 =1l,m,n,s

where, Ay is the area of the triangle (nodes I, m, n); subscript, n denotes the normal direc-
tion on surface S§; symbol, j' is the node on surface S§; V is the volume of the tetrahedral
element, e.

6 Calculation of Current Density

The current density is proportional to the electric field intensity.

In region, §;:

where, o, is the conductivity of region, £;, which is homogeneous.

From (47) and (48), the element potential and its gradient can be expressed as follows:

Im L,
=) N;¢; — Y N,T; (95)
3=l j=l;
[ Iy
V¢ =3 VN;4, - Y VN,T; (96)

o .
J=l J=ll
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The element current density can therefore be calculated by:

!

Ji= —01{(i VN;é; - i VN;T;) — (V. x By)} (97)

s=h i=t,

where, VN; (i = I,m,n, s) can be calculated using equations (89) through (92).

In region, {;:

In this region, no (V' x _B_) component and no potential jump are encountered. Hence,
the current density of the element becomes:

To = =5 (3 VN:éy) (98)
=l
7 Example

In this work, an example (see Fig.2.5) is chosen to verify that the practicality and utility
of the 3D-FE model developed in the previous sections. In Fig.2.5, we choose a cylinder as
the moving object in place of the space station. Some geometric parameters and physical
parameters are as follows:

the length of the cylinder, L =20 m

the radius of the cylinder, R =5 m

the radius of the outer sphere boundary, Rp =40 m

the flux density along the negative z-axis, B, = 0.45G = 0.45 x 107*Wb/m?

the speed of the cylinder along the negative y-axis, V, = 8km/sec.

the conductivity inside the cylinder, o; = 5.7 x 107 1/(Q - m)

the conductivity outside the cylinder, o, = 5.7 x 10° 1/(Q2 - m)

The outer boundary condition in this example is assumed to be the natural boundary con-
dition.

The 3D-FE gird with a total number of elements, NE=3456, and a total number of
nodes, NN=669, is shown in Fig.2.6. An FE grid with a total number of elements, NE=28128,
and a total number of nodes, NN=4963, is chosen for the FE computation, whose surface
elements on the cylinder and outer boundary are shown in Fig.2.7. The equipotential lines
and the current density distribution along the plane of the cross section (z = 0,y > 0) were
plotted from the results of this FE model see Fig.2.8 and Fig.2.9, respectively. The numerical
results of the current density component J, vs radius on Plane x=0 are plotted in Fig.2.10.
The numerical results of the scalar potentials located on the x-axis are plotted in Fig.2.11.
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8 Conclusions and Possible Future Work

As a result of this investigation two technical papers on ballooning FE models and on twisted-
pair transmission lines were presented at the IEEE INTERMAG-92 Conference, and were
simultaneously published in the September issue on the IEEE Transactions on Magnetics
(IEEE Trans. on Magn. Vol.30, No.5, 1992). These papers are included here in Appendix
(I1I) and Appendix (IV), respectively.

Meanwhile, in order to obtain higher accuracy results regarding the present (V, x By)
problem formulated in this report, the asymptotic boundary conditions (ABCs) should be
adopted instead of the natural boundary conditions. High order ABCs can improve the
accuracy of the numerical results.

When the moving body is long and slender, a sphere shape outer boundary would
be “storage memory intensive” and numerically inefficient. It would be highly desirable
to choose an outer boundary that is conformal to the shape of the object. A formulation
based on the ABCs should be derived for this 3D-FE scalar potential problem with an outer
boundary of an arbitrary shape ( an ellipsoid is one possibility).

In future work, the flux density distribution caused by the resulting pattern of induced
current in the plasma and structure can be computed. This can be accomplished by a 3D-
FE vector potential formulation using second order elements with the ABCs on the outer
boundary, which should be designed to accommodate various shapes of the orbiting body
under consideration.
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The Current Density Component Jx on Plane X=0
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Figure 2.10 The current density component J, distribution on plane x = 0 with o,
= 5.7 x 10" 1/Q-m, 0, = 6.7 x 10° 1/Q-m.
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Figure 2.11 The scalar potentials on the x-axis with o, = 5.7 x 10" 1/Q-m, 6, = 5.7

x 10° 1/Q-m.
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3 Radiation Sources

This portion of the investigation centers on the development of computer
models to calculate the radiation from simulated electromagnetic interference (EMI)
sources on the space station.

Section 3.1 briefly describes the plasma environment of the ionosphere within
the altitude range corresponding to the orbit of the space station. It is shown that
the anticipated frequencies of potential EMI sources fall well below the plasma
frequency. Therefore, radiation at these frequencies will be attenuated by the
plasma. Method-of-moments analyses of the radiation by sources on a straight wire
and on a simple model of the space station demonstrate that both the currents in the
structure and the electric fields around the structure may be calculated. Calculated
results are also shown for the simple model of the space station embedded in a zero-
order-plasma. This plasma approximation includes the charged particle density at
the altitudes of interest, but neglects the geomagnetic field, thereby resulting in an
isotropic rather than an anisotropic plasma. The results show that while the plasma
attenuates the radiation, induced currents in the structure nevertheless produce
radiated fields that exceed those that would be present in the absence of the
conducting space station structure. Software that can be used to visualize contour
diagrams of the calculated electric field distribution around the simple model of the
space station is described.

Section 3.2 describes the development of a wire-grid model of the space station
that has been analyzed using the method-of-moments by the Electromagnetic
Environmental Effects Laboratory at the Georgia Tech Research Institute. This is
almost the same approach that the European Space Agency is using to predict EMI
problems on their spacecraft. Calculations have been made for eight different cases
comprising two source locations, two polarizations, and two frequencies, 20 KHz and
5 MHz. The calculated results show top view and side view contour graphs of the
electric field for each case - a total of sixteen graphs. Software that can be used to
visualize both the wire-grid space station model and contour diagrams of the
calculated electric field distribution around the space station is described.

Section 8.3 briefly summarizes the available literature on plasma sheath
waves. Excerpts from three recent publications, a journal article and two conference
proceedings, are given. It has been shown (by others) that a region of low charge
density, called a sheath, forms around a conducting object, like the space station,
when it is embedded in the ionospheric plasma. A source on the conducting object
can very efficiently transfer electromagnetic fields to distant locations by launching
waves in the sheath region. The condition for transmission is the opposite of that for
propagation in the ambient plasma as described in Section 3.1. Namely, sheath
transmission is unattenuated for frequencies below the plasma frequency and is
attenuated for frequencies above the plasma frequency. Sheath waves may therefore
be an important factor in EMI analysis.

Section 3.4 briefly summarizes the available literature on finite-difference time-
domain analyses of electromagnetic wave propagation in anisotropic plasmas. The
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abstracts of three publications, two journal articles and a conference proceeding, are
given. These new analysis tools may be important for predicting the propagation of
EMI signals in realistic models of the ionospheric plasma, i.e., a plasma model that
includes both the charged particles and the geomagnetic field.

3.1 Simple Wire Model of Space Station Freedom in a Zero-order Plasma

The space station will be embedded in the ionospheric plasma, a region of
dense electric charge. As far as electromagnetic wave propagation in the ionosphere
is concerned, the ionosphere can be modelled as an isotropic plasma if the
geomagnetic field is neglected. Electromagnetic waves are then attenuated when
their frequency is below the plasma frequency, but they propagate freely and
unattenuated when their frequency is above the plasma frequency. Most importantly,
the direction in which the wave is traveling is immaterial - exactly the same behavior
occurs. However, when the geomagnetic field is considered, the plasma becomes
anisotropic and the affect of the ionosphere on electromagnetic wave behavior
depends on the direction of the electromagnetic wave relative to the direction of the
magnetic field. All electromagnetic interference analyses to date have assumed an
isotropic plasma, i.e., the geomagnetic field has been neglected. This assumption
seems appropriate when what is needed is the basic behavior of electromagnetic
interference in the presence of the plasma - to assume otherwise would greatly
complicate any numerical calculations with little improvement in understanding the
basic behavior of the interaction.

The key parameter in studying electromagnetic wave propagation in a plasma
is the plasma frequency

Ne? (1)

where N is the electron density in electrons per m’, e is the electron charge in
Coulombs, m, is the electron mass in kg, and ¢, is the permittivity of free space.
Although the ionosphere consists of both electrons and ions, most of the interaction
occurs with the electrons because they have a much smaller mass, and therefore are
more responsive to the influence of electric and magnetic fields. That is the reason
that the plasma frequency is written only in terms of the electron charge and mass.

The variable factor in eq. (1) is the electron density N. Figure 3.1 shows the
ionospheric charge density as a function of altitude for an equatorial orbit
corresponding to the orbit of the space station. If only the electrons are considered,
and an orbit altitude of 450 to 550 kilometers is assumed, it can be seen that log,, N
falls in the range of 4.7 to 6.3 as shown in the outlined rectangular region in Fig. 3.1.
This corresponds to an electron density N of 0.05 x 10** to 2.0 x 10'? electrons per m’.

Figure 3.2 shows the calculated plasma frequency, f, = 2nw,, for the assumed
range of N. From the graph, it can be seen that the minimum plasma frequency of
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2 Mhz corresponds to the minimum electron density. Since propagation occurs for
frequencies above the plasma frequency and attenuation occurs for frequencies below
the plasma frequency, attenuation is expected for all frequencies below 2 Mhz. A
plane wave is attenuated by a factor of exp(-ar), where a is the attenuation factor in
m' and r is the distance in m. The attenuation factor o is dependent upon the
frequency of propagation w relative to the plasma frequency w, according to

w
w - 2% |22
A ®

2

(2)

Figure 3.3 shows the calculated attenuation in dB/m as a function of frequency for
different electron densities. The attenuation factor increases with increasing electron
density. For a given electron density, the attenuation is fairly constant until the
plasma frequency is approached, at which point the attenuation drops to zero
according to eq. (2).

The effect of the plasma on electromagnetic wave propagation is explicitly
shown in Fig. 3.4. This shows the 0 - component of the electric field radiated by a
short dipole as a function of distance away from the dipole for free space (zero
electron density) and for electron densities from 0.01 x 10'? to 1.0 x 10'* per m®. It
is clear that increased electron density results in increased attenuation. Here we
have assumed that the near-field attenuation of the dipole fields occurs in a similar
way as far-field attenuation.

The above has considered the effects of the plasma on electromagnetic wave
propagation, but without the presence of the space station structure. The influence
of physical structure can be incorporated by using the method of moments, a well-
known numerical electromagnetic analysis method. The method of moments can be
used to find the currents and the local electromagnetic fields about a conducting
structure which has been excited by a current or voltage source. The calculation
finds both the currents and the fields. In fact, the solution procedure first finds the
currents and then calculates the fields radiated by these currents. As an example,
Figure 3.5 shows a 100 m wire (divided into 34 segments for analysis) excited by a
short monopole antenna at the left end. The current distribution in the wire is then
calculated for a 20 KHz, 100 KHz, 1 MHz, and 5§ MHz source for the free-space (no
plasma) case. The calculated current distribution is shown in Fig. 3.6. At the lower
frequencies of 20 and 100 KHz, the normalized current distribution is the same. The
smooth decrease of the current from the maximum at the source end to zero at the
far end is characteristic of an antenna that is short relative to a wavelength. The
wavelength at 100 KHz is 3000 m, so the structure is about 0.033 wavelengths in
length at this frequency. The length of the wire in terms of wavelengths is even
shorter at 20 KHz. As the frequency increases to 1 MHz, the distribution changes
only slightly, as the structure is now about 0.3 wavelengths in length. However, at
5 MHz, the structure is 1.67 wavelengths in length. Since we expect standing waves

33



to form with nulls every half wavelength, excitation at 5§ Mhz should result in
1.67/0.5 or 3.3 standing wave cycles along the wire length. Figure 3.6 therefore
shows the expected result. There are also fields radiated by the wire, but they are
not shown here. However, it is important to recognize that the currents in the wire
and the fields around the wire are coupled and both will be excited by a source on
this or any other conducting structure.

Figure 3.7 shows a simple wire model of the space station for which near-field
calculations have been made using the method of moments. The 100 m longtitudinal
wire consists of 20 segments, with a one-volt source on the left-most segment. The
source location was selected to simulate the switching associated with the
photovoltaic solar panels. The two vertical wires, representing the habitation and
laboratory modules, are each divided into 10 segments. The calculations account for
the influence of the ionosphere by assuming a zero-order plasma environment.
However, the effects of the plasma are incorporated only in the calculation of the
radiated field and not in the calculation of the currents which produce the fields.
Simple wire models like this are acceptable when the physical details of the actual
structure are of a dimensional scale much less than a wavelength. At 1 MHz, the
largest dimension of this model of the space station is only 0.33 wavelengths in
length, so modelling with wires is justified.

Calculations were first made for the model in free space. Figure 3.8 shows the
results for a 1 MHz source located at the left end of the structure, corresponding to
the origin (x = 0, y = 0) in Fig. 3.8. The contour lines are in units of dB pV/m. The
results show the field strength to be relatively strong around the source as expected.
The strong fields at the opposite end of the structure from the source indicate that
conducted currents in the structure are an extremely efficient mechanism for
transferring the influence of the source to other points on the structure. Based on
the rapid decrease of the fields in the free-space region around the source, normal
free-space considerations would predict fields at the far end of the stucture to be an
order of magnitude less than what is calculated with the structure present. This is
the reason why the conducting structure plays such an important role in
electromagnetic interference analysis - it provides a current pathway for
electromagnetic fields.

The calculations were repeated using a zero-order plasma environment with
an electron density N of 0.1 x 10", corresponding to a plasma frequency of about 3
MHz. These results are shown in Fig. 3.9 and the attenuating effect of the plasma
is obvious as the fields around the space station structure are greatly reduced (recall
that the units are dB pV/m). However, the fields very close to the structure are still
significant. This is once again a result of the fields being transferred to other
locations on the structure via the conducted currents. The method of moments
solution for the plasma case did not use the plasma in the calculation of the currents
(the structure current is the same in the calculation of Figs. 3.8 and 3.9), but only in
the calculation of the fields radiated by the current. Were the plasma included in the
current calculation, attenuation of the current would be expected and even lower
fields close to the structure should result. Nevertheless, it is clear that the
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conducting structure plays a significant role in producing fields close to the structure
that are substantially greater than would be expected from consideration of radiation
effects alone.

Computer Visualization

The calculated method-of-moments results in Figs. 3.8 and 3.9 may be viewed
on a color monitor. An IBM-compatible PC with 512 Kb memory and (preferably) a
hard disk is required. A graphics program called TOPO, licensed from Golden
Software, Inc., may be used.

First create a directory on the hard disk called TOPO and change to this
directory. Then insert Disk #1 into the 3.5" floppy disk drive, switch to the floppy
disk drive, change to directory TOPO, and copy all files to the hard disk (usually
drive C:). Then switch back to the hard disk. The contour graphs may be generated
as follows:

type topo/cmd=fs (upper or lower case)

when the program is loaded, press F2 to display Fig. 3.8 (free-space
result)

press ESC when finished viewing
press ESC and RETURN to exit the graphics program

repeat the above except type topo/cmd=zop to display Fig. 3.9 (zero-order
plasma result)

3.2 Method-of-Moments Wire-Grid Model of Space Station Freedom

The method-of-moments may be used to find the conducted currents and fields
radiated from sources on the space station. Early work used a simple wire model
embedded in a zero-order plasma to determine the near-field electric fields. The
model was then improved by more accurate modelling of the habitation/laboratory
module and the addition of solar panels. The latest model is shown in Fig. 3.10. This
model is constructed using a wire mesh with 720 wire segments.

It is interesting to note that the European Space Agency is using the same
electromagnetic analysis technique to develop EMC models of spacecraft (ESA report
dated 8-28-91). Specifically, the method of moments is used to calculate the currents
and the near electric field for a spacecraft excited by a voltage source. The method
uses triangular surface patches rather than a wire grid to model the structure. The
referenced report indicates that future work will include time-domain solutions,
excitation by current sources as well as voltage sources, and the capability to include
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dielectric materials as well as conducting surfaces. This work has apparently not
included the effects of a surrounding plasma, probably because the applications
currently being considered involve satellites in orbit above the ionosphere, in which
case free space is a reasonable assumption.

The wire-grid model of the space station has been analyzed by the
Electromagnetic Environmental Effects Laboratory at the Georgia Institute Research
Institute using the General Electromagnetic Model for the Analysis of Complex
Systems (GEMACS) computer program, which is a commercial method-of-moments
electromagnetic analysis program. The program assumes free-space conditions, so
the presence of the ionospheric plasma is not accounted for.

Four sets of calculations have been made, one for each of four different source
configurations, two locations and two polarizations, as shown in Fig. 3.10 that are
labelled #1, #2, #3, and #4. Two source frequencies, 20 KHz and 5§ MHz, are
considered for each source location and the distribution of the electric field is
displayed in two planes, the x = 0 plane (Side view) and the z = 0 plane (Top view),
as defined in Fig. 3.10. A total of 16 calculations have been made and graphs of the
results are enclosed in this report as Figs. 3.11 - 3.26. The key to the graphs is
shown in Table L.

Each of the graphs shows contours of electric field strength in dB pV/m for a
one Volt source at the locations shown in Fig. 3.10. The reference for the dB scale
differs from that used in Figs. 3.8 and 8.9 in that the reference level (0 dB) is set at
the source resulting in a relative dB scale, whereas the simple wire model results
displayed in Figs. 3.8 and 3.9 were on an absolute basis. The only practical difference
is that the contours displayed here show negative dB values.

While calculations have been made for 20 KHz and 5 MHz (the 2560th harmonic
of 20 KHz), the 20 KHz results are of the most interest. The 20 KHz results for the
source at location 1, top (file C20_T1) and side (file C20_S1) views, show the locations
of high and low field strength. In particular, they show, as in the previous results
for a simple wire model, that the presence of the conducting structure results in
higher electric fields away from the source than would exist if the structure were not
present. As previously explained, electric currents in the structure serve as a
transfer mechanism for the electric fields.

Computer Visualization

The model shown in Fig. 3.10 may be viewed and rotated on a color monitor.
An IBM-compatible PC with 5§12 Kb memory, (preferably) a hard disk, and a mouse
is required. A freeware program called 3dv may be used.

First create a directory on the hard disk called 3D and switch to this directory.
Then insert Disk #1 into the 3.5" floppy disk drive, switch to directory 3D, and copy
all files to the hard disk (usually drive C:). The model may be viewed as follows:

type 3dv (upper or lower case)
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use the mouse to click on the correct graphics mode (if necessary)
use the mouse to click on the o bullet to the left of FILE

use the mouse to click on SSF.3DV

use the mouse to click on the o bullet to the left of SHOW

rotate the model by moving the mouse

when through viewing, click either mouse button

use the mouse to click on the © bullet to the left of EXIT

The 16 calculated method-of-moments results for the wire-grid model may be
viewed on a color monitor. An IBM-compatible PC with 512 Kb memory, (preferably)
a hard disk, and a mouse is required. A graphics program called GraphTools,
licensed from 3-D Visions Corporation, may be used.

First create a directory on the hard disk called GT and switch to this directory.
Then create a subdirectory on the hard disk called TMP. Then insert disk #2 into the
3.5" floppy disk drive, switch to the floppy disk drive, change to directory GT, and
copy file GTOOL.EXE to the hard disk (usually drive C:). Then switch back to the
hard disk and change to subdirectory TMP. Then switch back to the floppy disk drive
and change to subdirectory TMP. Copy all 33 files in TMP to the hard disk (usually
drive C:). Then switch back to the hard disk and change to directory GT. Run
program GTOOL to create the GraphTools graphics package. When the program has
finished running, delete GTOOL.EXE. The contour graphs may be viewed as follows:

type gt (upper or lower case)

from the menu, use the mouse to click on File
use the mouse to click on Directory

use the mouse to click on OK

use the mouse to click on File

use the mouse to click on Load

press F'3 to view the available files

use the mouse to click on the file that is to be plotted (see Table I)
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use the mouse to click on OK
use the mouse to click on Redraw
to view another file, click on File, Load, and press F3 as before

use the mouse to click on Quit when finished

3.8 Sheath Waves - A Summary of the Recent Literature

J. J. Laurin, G. A. Morin, and K. G. Balmain, “Sheath wave propagation in a
magnetoplasma,” Radio Science 24, pp. 289-300, 1989. (Complete paper in Appendix
L)

“It has been understood by many authors that the presence of a low
electron density sheath surrounding an antenna immersed in isotropic
plasma provides a propagation region for electromagnetic waves, a
situation that is of particular interest at low frequencies (signal
frequency w < plasma frequency w,) where the ambient plasma is cut off
for uniform plane waves. In this case, the metal-sheath-plasma region
becomes analogous to a waveguide in which surface waves, so-called
sheath waves, may be excited and propagate over sufficiently long
distances ... also provide a possible mechanism for locally generated
electromagnetic waves to propagate between widely separated points on
large spacecraft in the ionosphere.”

G. B. Murphy and H. B. Garrett, “Interactions between the Space Station and the
environment - a preliminary assessment of EMI,” Proceedings of the 3 Annual
Workshop on Space Operations Automation and Robotics, Johnson Space Center, pp.
493-507, March 1990.

“If the structure is conductive it will have a significant sheath
surrounding it due to the v x B motional potential. This sheath has
been shown to be capable of conducting noise over large distances very
efficiently. Sheath waves are guided waves that are conducted along
conductors surrounded by sheaths much like waves in a coaxial cable
transmission line. Anywhere sheaths overlay, the waves can propagate.
The significance of this is that noise generated locally can be conducted
along Space Station structures to other cables which may be sensitive
to this frequency. Unless the sheath is forced to collapse, the waves
propagate with little attenuation. Therefore, as a worst case scenario,
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we assume that cables placed anywhere externally on the Space Station
may be within a sheath which is connected to a source of noise via the
structure-sheath coax transmission line.”

K. G. Balmain, H. G. James, and C. C. Bantin, “Magnetoplasma sheath waves on a
conducting tether in the ionosphere, with applications to EMI propagation on large
space structures,” Proceedings of the 4" Annual Workshop on Space Operations
Automation and Robotics, Johnson Space Center, pp. 646-6564, January 1991.
(Complete paper in Appendix II.)

“The evidence suggests that, on any large structure in low earth orbit,
transient or continuous-wave electromagnetic interference, once
generated, could propagate over the structure via sheath waves,
producing unwanted signal levels much higher than in the absence of
the ambient plasma medium.”

~

3.4 Finite-Difference Time-Domain Modéling of the Ionosphere

T. Kashiwa, N. Yoshida, and I. Fukai, “Ti‘ansient analysis of a magnetized plasma
in three-dimensional space,” IEEE Trans. Antennas Propag. 36, pp. 1096-1105, 1988.

Abstfact

In recent years electromagnetic analyses of magnetized plasma have
become important in various fields. Because of gyroelectric anisotropy
with dispersion characteristics, the analysis is complicated, and three-
dimensional treatment is indispensable. For efficient three-dimensional
analyses in the time domain, the finite-difference time-domain method
and the transmission-line-matrix method are generally used. However,
until now these methods do not seem to have been applied to gyrotropic
anisotropy with dispersion in the time domain. A new method was
recently proposed for transient analysis in three-dimensional space
based on the equivalént circuit of Maxwell’s equations and formulation
by the Bergeron method. In this method, magnetized cold plasma, that
is, gyroelectric anisotropy with dispersion, is formulated by adapting the
trapezoidal rule to the characteristic equation of motion of the plasma
in the time domain. The formulation of the magnetized cold plasma in
three-dimensional space and in the time domain by the present method
is described. The two principal problems, transverse and longitudinal
propagation, are studied. By examining these results, the validity of
this formulation is demonstrated.
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R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A frequency-dependent finite-
difference time-domain formulation for transient propagation in plasma,” IEEE
Trans. Antennas Propag. 39, pp. 29-34, 1991.

Abstract

Computation of transient electromagnetic propagation through plasma
has been a difficult problem. Frequency domain solutions are available
for one or two dimensions and stratified plasma geometries. Transient
solutions have been obtained via transformations to the time domain, or
by microscopic solution of the equations of motion of the charged
particles. The finite-difference time-domain (FDTD) method is capable
of explicitly computing macroscopic transient electromagnetic
interactions with general three-dimensional geometries. However,
previous FDTD formulations were not capable of analyzing plasmas for
two reasons. First, FDTD requires that at each time step the
permittivity and conductivity be specified as constants that do not
depend on frequency, while even for the simplest plasmas these
parameters vary with frequency. Second, the permittivity of a plasma
can be negative, which can cause terms in FDTD expressions to become
singular. A new FDTD formulation for frequency dependent materials
(FDYTD has been developed, which removes the above limitations. In
a previous paper (FDFTD was applied to computation of transient
propagation through a polar dielectric. In this paper, we show that
(FDYTD may also be applied to compute transient propagation in
plasma when the plasma can be characterized by a complex frequency-
dependent permittivity. While the computational example presented in
this paper is for a pulse normally incident on an isotropic plasma slab,
the (FD)’TD formulation is fully three-dimensional. It can accomodate
arbitrary transient excitation, with the one limitation that the excitation
pulse must have no zero frequency energy component. Time-varying
electron densities and/or collision frequencies could also be included.
The formulation presented here is for an isotropic plasma, but extension
to anistropic plasma should be fairly straightforward.

P. M. Franke and L. J. Nickisch, “Finite Difference - Time Domain solution of the
Maxwell equations for the dispersive ionosphere,” Proceedings of the 1991 APS/URSI
International Symposium, London, Ontario, p. 85, June 1991.

Abstract

The Finite Difference - Time Domain (FDTD) technique is a conceptually
simple, yet powerful method for obtaining numerical solutions to
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electromagnetic propagation problems. The application of FDTD
methods to problems in ionospheric radiowave propagation is, however,
complicated by the dispersive nature of the ionospheric plasma. In the
time domain, the electric displacement is the convolution of the
dielectric tensor with the electric field, and this convolution is
untractable in the nearest neighbor FDTD approach.

This difficulty can be avoided by returning to the constitutive relations
from which the dielectric tensor is derived. By integrating these
differential equations simultaneously with the Maxwell equations,
dispersion (and absorption) is fully incorporated. The method is shown
to be accurate by comparing to a known analytic solution for a special
case.
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Sheath wave propagation in a magoetoplasma

J.-J. Laurin, G. A. Morin,! and K. G. Balmain
Department of Electrical Engineering, University of Toromio, Toronto, Ontario, Canada

(Received June 13, 1988; revised February 14, 1989; accepted February 21, 1989.)

A theory is presented for propagation of clectromagnetic waves copcentrated in the vacuum-gap
sheath region separating s plane conductor from s cold magnetoplasma. The applied siatic magnetic
field is parliel 10 the conductor and is the direction of wave propagation The ry predicts
propagation at all frequencies between zero and the upper-bybrid frequency divided by Experi-
mental results are reported in which resonances caused by the wave reflection at the end of a thin
cylindrical antenna aligned with the magneric field are used 1o determine the sheath-wave dispersion
relation. The effect of the antennas bias, plasms density and antenna diameter on the dispersion relation
are studied experimentally and the results are compared with the plane-surface theory. In spite of the
difference between the theoretical and experimential geometries, qualitative sgreement is noted with
respect to variations in magnetic field plasma density, sheath thickness and asienna radius. The
prediction that the presence of an applied magnetic ficld raises the upper sbeath wave cutoff frequency
has been confirmed experimentally, as well as the prediction that the presence of the sheath aliows
propagation above the cyclotron frequency. In particular, both theory snd experiment show the exis-
tence near the cyclotron frequency of a special frequency at which the sheath-wave wave number is

independent of the plasma density.

1. INTRODUCTION

It has been understood by many authors that the
presence of a low electron density sheath sur-
rounding an antenna immersed in isotropic plasma
provides a propagation region for electromagnetic
waves, a situation that is of particular interest at low
frequencies (signal frequency w < plasma frequency
w,) where the ambient plasma is cut off for uniform
plane waves. In this case, the metal-sheath-plasma
region becomes analogous to a waveguide in which
surface waves, so-called sheath waves, may be excited
and propagate over sufficiently long distances to sat-
isfy resonance conditions set by the finite dimeasions
of the antenna structure. The immediate result of
these resonances is a significant contribution to the
antenna impedance. In fact, impedance measurement
of a simple monopole antenna has probably been the
most popular method used so far in experimental
sheath wave characterization [Marec, 1970; Meyer e1
al. 1974; Ishizone et al., 1970a, b, c). Sheath waves
not only affect antenna performance but also provide

'Now 4t Depariment of National Defence, Ottawa. Ontario.
Copynghi 19K by the Amencan Geophysical Union

Papet number ROR SO04 20
004%-6604 39 B9R S 004 20508 00
1

a possible mechanism for locally generated electro-
magnetic waves (o propagate between widely sepa-
rated points on large spacecraft in the ionosphere.
These waves could give rise to electromagnetic inter-
ference if picked up by sensitive devices distant from
the source.

In this paper, results of theoretical and experi-
mental research on sheath wave propagation in a
magnetized plasma are presented, for the case of
propagation in the direction of the static magnetic
field B, . In carlier work, Mushiake [1964] derived a
dispersion relation for surface waves along a thin,
unshcathed wire parallel to B,. His equation predic-
ted propagation cutoff for frequencies greater than
the cylotron frequency w, . Adachi [1977] proposed a
transmission line model to calculate the impedance
of a sheathless dipole antenna of finite thickness oni-
ented at an arbitrary angle with respect to B,. In the
case where the antenna and B, are aligned, this
model predicts resonances called “lower n wave-
length™ below w, . Given the antenna length, the fre-
quencies of these resonances can be predicted by Mu-
shiake’s formula. Miller [1967a, b] found that the
presence of a vacuum gap sheath allows surface wave
propagation ‘therefore called sheath-wave propag?-
tion) well above w,. On the experimental side,
measurements done in laboratory magnetized plas-
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Fig 1. Planar configuration for sheath wave propagation in the £ direction.

mas [Ishizone et al, 1969, 1970a, b; Sawaya et al,
1978] have revealed the presence of one, and some-
times two, resonance peaks in the neighborhood of
@, . Due to this small number of resonances, there is
only limited evidence that their presence is related to
sheath-wave propagation. This is because there could
be many other types of waves that are likely to cause
resonance in a finite-dimension plasma chamber.
Also, even if the resonances reported were due to
sheath waves, their small number would make diffi-
cult, if not impossible, the study of the dispersion
relation.

The objective of the present work is to establish
clear experimental evidence that sheath waves indeed
exist on an antenna in a magnetoplasma, that the
waves can be easily excited, and that their dispersion
relation can be determined approximately through
measurement of antenna input impedance. A further
objective is to relate the measured dispersion relation
to the theoretical relation for sheath waves in a
planar plasma-sheath~conductor region.

2 THEORY

The derivation of the dispersion relation of surface
waves propagating over an infinite metal structure
immersed in a magnetoplasma is now given. In order
to simplify the problem from s mathematical and
computational point of view, the following geometry
has been adopted. The metal structure is reduced to
ao infinite plane over which is a semi-infinite mag-
netoplasma. A vacuum sheath of arbitrary thickness
separates the metal from the plasma (see Figure 1)

The study has also been limited to the particular
case where the metal surface and the direction of
propagation are parallel to the magnetic field which

is in the # direction. In fact, it is the only situation in
which the planar geometry is comparable to the cy-
lindrical one in which we are actually interested. In
the general case, the angle between the normal to the
surface and B, is not constant around a cyiindrical
surface, a situation that is impossible to reproduce
with a planar structure. This incompatibility is
avoided if the cylinder considered is aligned with B,.

Finally, any variation of the field quantities in the
¥ direction is neglected. This will not only simplify
the analysis but also will provide similarity between
the anticipated solution for the plane and the case of
the cylindrical geometry in which azimuthal sym-
metry would be assumed.

For the plasma region, a cold magnetoplasma of
uniform density was assumed. In this model, the rela-
tive permittivity is given by the well known tensor:

K jK° 0
K= |[-jk* K 0]=€~ )
0 0 XK,
in which
) ux . -YX
Kel-ioy Kpoe
x —
Ko=1 —Ij' -
with
X = (r):/w’ Y= w,/w U= -j" w

w, electron plasma frequency;
w, electron cyclotron [requency:
w excitation frequency;
v effective electron-neutral collision frequency.
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The SI system of units has been adopted in this
paper. Also, all the field quantities, except By, will be
manipulated as phasors.

In the case of harmonic time dependence of the
type &=, Maxwell's equations are written

Vx H=jw,K-E (2a)
VxE= —jouH @)
V-K-E=0 (2)
v-H=0 24
for the plasma region, and
Y x H =juwe E (30)
VxE=—joyH (3b)
V-E=0 (3¢)
V-H=0 d)

in the vacuum-gap sheath region Assuming a z vari-
ation of the type e~ 2, where k is the complex propa-
gation constant, one can write the V operator as

3
V- (— 1. 0. —jki)
éx

2.1. Solution in the sheath

Using this definition of ¥, the components of E
and H can be conveniently separated into two inde-
pendent sets and the general solution to equations (3)
is written as a superposition of a TM and a TE
mode:

TM mode
H, = C cosh (hx) + E sinh (hx) (4a)
k
E,-—H, (4b)
ey
h .
E,=—(C sinh (hx) + E cosh (hx)) (4¢)
Jwk
TE mode
E, = D sinh (hx) + F cosh (hx) (5a)
-k
H,=—E, (5b)
Wi
-h '
H,=— (D cosh (hx) + F sinh (hx)) (5¢)
JoKe
where
h= (k, - ﬁ:)m (m

in which f3 = wltapy. C, D, E and F are arbitrary
constants. The boundary conditions at the metal sur.
face (x = 0) require that E,=0and E, = 0. This sets
E = F = 0in (4) and (5)

22 Solution in the plasma

Unlike the sheath region, the anisotropic nature of
the plasma makes impossible the separation of the
field components into two independent sets. There-
fore it is only necessary to solve for one field compo-
pent from which all the others can be derived. The
choice of this field component may seem purely arbi-
trary a priori. The choice of a component belonging
to the TM mode will lead to a more general solution
because, as it will be seen later, the components of
the TE wave vanish if w, is reduced to 0. Also, in
order to ensure conformity with the existing litera-
ture, the solution for E_ is found.

After a few algebraic manipulations (Laurin,
1986, equations (2) can be combined into the follow-
ing:

(Vs = 2Vl - 2))E, = 0 (6
where Vt is the component of ¥ perpendicular to the

i direction. The quantities 1} and 2] are solutions of
the biquadratic equation,

a1 + b’ +¢=0 (a)
with
a=K (7b)
b=pBiKY - K1+ KKy - kdKg+K)  (T0)
e = BiK K = K = 280K K + kK, (7d)

With Vi = (&/8x)%. the general solution to (6) is
E, = Ac"" + B 4+ Ge™™" + Je™*"

A, B. G and [ are constants. If we choose a; and 1,
such that their real paris are negative, the solution
for E, remains physically possibly only fG=I=0.
Thus,

E, = A’ + B 3]
However, in the particular case where

b ~4ac=0 9

the general solution for E_ 1

E = (Ax + B)e” o

)

with
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For this last solution, k can be obtained directly
from (9) and it is independent of the sheath thickness.
However, calculation of the fields in the sheath and
in the plasma using this value of k reveals that al] the
boundary conditions at the sheath edge cannot be
satisfied simultaneously. This second type of solution
should therefore be rejected. :

For the solution given by (8), the other field com-
ponents are easily calculated by putting E, back into
Maxwell's equations.

i [(Ky - K, -
E,--L [“ — aee y &Ko - 6) B
kK LA 2,

| (Q (] )
E m—[_ g ¢ — Bt
’ kK" a, I,

-1 ’
H o= (! A ¢ — le"')
K wug \a, g

:, 'A x ' 2
H, = jue, K, ,—e" +’—("
1 2

H, =

Ae" 4 0Bes
kK wpy, (o K

where
@ = Kok? — B3k ~ k2
0= Ko(k* - B1K) - K'2}

2.3, Dispersion relation Jor the sheath waypes

The dispersion relation is obtained from the
boundary conditions at the sheath-plasma interface
which are (1) absence of charge accumulation other
than polarization charges and (2) absence of surface
current (electric and magnetic) Those conditions are
satished if, at x = g, (1) D, is continuous:

c y B
— cosh (hs) = jK, (— ey~ e‘") (110)
wey a,

(2) E, is continuous:

‘ /¢ (]
D sinh (hs) = i (— AV 4 — Be"‘) (11%)

1, 2,

(3) E. is continuous:

h
—— C sinb (hs) = 4"t 4 Ber (lle)
Jwe, .
(4) H, is continuous (satisfied by case 2), (5) H, is
continuous (satisfied by case 1), and (6) H, is continu-
ous:

!
hD cosh (hs) = P (pAc" + 8B ™) Ui

Note that in equations (115) and (11d), the previous
constant D has been arbitrarily replaced by D/K*
This substitution facilitates the use of the same deni-
vation for the solution in the isotropic case by simply
setting @, = 0 in the expressions for the fields. When
@ =0, we have X' = K, and K* = 0 and equations
(7) can then be combined to form

(2 +pIKy- k) w0

!f-z}-l’-k’—ﬂzk.
which leads to
oe=f=(

Also, the general solution for E, in the plasma region

becomes
E =A™ (12)

Equations (11a), (115}, and (11¢) are then equivalent
to, respectively,

Jweg Ky

C cosh (hs) = A~ (13a)
D=0 (136)
C sinh (hs) = -j% Ae™ (13¢c)

Elimination of the constants A and C gives the dis-
persion relation for the isotropic case:

a
tanh (hs) = K—,h
When there is no sheath, the boundary condition on
E, at the metal surface sets A = 0 in (12), which
makes all the fields vanish This differs from the
sheathless anisotropic case where the boundary con-
dition on E, (given by (8)) sets A4 = = B, resulting in
nonvanishing ficlds.
For the anisotropic case, the elimination of the
constants 4, B, C, and D leads to the dispersion rela-
tion

tanh? (hs) (6, — 1)+ L" — @4

a,.a
+ tanh (hs)(p - gy 2 h>.o 14
anb (hs) (g (hl(,+ (14)

!



