88 research outputs found

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    The Role Of Superstructure Material On The Stress Distribution In Mandibular Full-arch Implant-supported Fixed Dentures. A Ct-based 3d-fea

    No full text
    This study evaluated the stress distribution in mandibular full-arch implant-supported fixed dentures with different veneering and metallic infrastructure materials, using three-dimensional finite element analysis. Ten models were obtained from an edentulous human mandible with a complete denture fixed by four implants. Acrylic resin (RES) and porcelain (POR) teeth were associated with infrastructures of titanium (Ti), gold (Au), silver-palladium (AgPd), chrome-cobalt (CoCr) and nickel-chrome (NiCr). A 100-N oblique was applied. The von Mises (σvM) and maximum (σmax) and minimum (σmin) principal stresses were obtained. The RES-AgPd group showed the lowest σvM values, while the RES-Ni-Cr group showed the highest. In the bone tissue, the RES-Au group was the only one that showed different σmax values with a 12% increase in comparison to the other groups which had similar stress values. In the implants, the groups with Ti, Au and AgPd infrastructures, either with porcelain or resin teeth, showed σvM values similar and lower in comparison to the groups with CoCr and NiCr infrastructures. The tooth veneering material influenced the stress values in metallic infrastructures, in which the acrylic resin had the highest values. The veneering and infrastructure materials have influence on stress values of implant-supported dentures, except for the peri-implant bone tissue. © 2013 Elsevier B.V.3519299Brånemark, P.I., (1983) J. Prosthet. Dent., 50, p. 399Snauwaert, K., Duyck, D., Van Steenberghe, D., Quirynen, M., Naert, I., (2000) Clin. Oral Invest., 4, p. 13Attard, N.J., Zarb, G.A., (2004) Int. J. Prosthodont., 17, p. 417Kregzde, M., (1993) Int. J. Oral Maxillofac. Implants, 8, p. 662Ciftci, Y., Canay, S., (2000) Int. J. Oral Maxillofac. Implants, 15, p. 571Van Rossen, I.P., Braak, L.H., De Putter, C., De Groot, K., (1990) J. Prosthet. Dent., 64, p. 198Stegaroiu, R., Sato, T., Kusakari, H., Miyakawa, O., (1998) Int. J. Oral Maxillofac. Implants, 13, p. 82Papavasiliou, G., Kamposiora, P., Bayne, S.C., Felton, D.A., (1996) J. Prosthet. Dent., 76, p. 633Assunção, W.G., Tabata, L.F., Barão, V.A., Rocha, E.P., (2008) J. Oral Rehabil., 35, p. 766Meijer, H.J., Kuiper, J.H., Starmans, F.J., Bosman, F., (1992) J. Prosthet. Dent., 68, p. 96Barbier, L., Vander Sloten, J., Krzesinski, E., Schepers, E., Van Der Perre, G., (1998) J. Oral Rehabil., 25, p. 847Kawasaki, T., Takayama, Y., Yamada, T., Notami, K., (2001) J. Oral Rehabil., 28, p. 950Teixeira, E.R., Sato, Y., Akagawa, Y., Shindoi, N., (1998) J. Oral Rehabil., 25, p. 299Chun, H.J., Park, D.N., Han, C.H., Heo, S.J., Heo, M.S., Koak, J.Y., (2005) J. Oral Rehabil., 32, p. 193Branemark, P.I., Hansson, B.O., Adell, R., Breine, U., Lindstrom, J., Hallen, O., Ohman, A., (1977) Scand. J. Plast. Reconstr. Surg. Suppl., 16, p. 1Skalak, R., (1983) J. Prosthet. Dent., 49, p. 843Geng, J.P., Tan, K.B., Liu, G.R., (2001) J. Prosthet. Dent., 85, p. 99Hulterstrom, M., Nilsson, U., (1994) Int. J. Oral Maxillofac. Implants, 9, p. 449Sertgöz, A., (1997) Int. J. Prosthodont., 10, p. 19Gomes, E.A., Barao, V.A., Rocha, E.P., De Almeida, E.O., Assunção, W.G., (2011) Int. J. Oral Maxillofac. Implants, 26, p. 1202Weiss, C.M., Weiss, A., (1999) Principles and Practice of Implant Dentistry, , second ed. Mosby Publication CompanyBranemark, P.I., Zarb, G., Albrektsson, T., (1985) Tissue Integrated Prostheses, , Quintessense Publishing ChicagoAdell, R., Lekolm, U., Rockler, B., Branemark, P.I., (1981) Int. J. Oral Surg., 10, p. 387Soumeire, J., Dejou, J., (1999) J. Oral Rehabil., 26, p. 394Jemt, T., Lekholm, U., Adell, R.R., (1989) Int. J. Oral Maxillofac. Implants, 4, p. 211Eskitascioglu, G., Baran, I., Aykac, Y., Oztas, D., (1996) Turk. J. Oral Imp., 4, p. 13Akça, K.C., Cehreli, M.C., Iplikçioglu, H., (2002) Int. J. Prosthodont., 15, p. 115Jacques, L.B., Moura, M.S., Suedam, V., Souza, E.A., Rubo, J.H., (2009) Clin. Oral Implants Res., 20, p. 737Castillo-De Oyagüe, R., Osorio, R., Lynch, C., Gilmour, A., Toledano, M., (2011) Med. Oral Patol. Oral Cir. Bucal, 16, p. 619Wakabayashi, N., Ona, M., Suzuki, T., Igarasgi, Y., (2008) J. Dent., 36, p. 463Batenburg, R.H., Raghoebar, G.M., Van Oort, R.P., Heijdenrijk, K., Boering, G., (1998) Int. J. Oral Maxillofac. Surg., 27, p. 435Devocht, J.W., Goel, V.K., Zeitler, D.L., Lew, D., (2001) J. Oral Maxillofac. Surg., 59, p. 775Barão, V.A., Delben, J.A., Lima, J., Cabral, T., Assunção, W.G., (2013) J. Biomech., 46, p. 1312Assunção, W.G., Barão, V.A., Tabata, T.F., De Sousa, E.A., Gomes, E.A., Delben, J.A., (2009) Gerodontology, 26, p. 273Tada, S., Stegaroiu, R., Kitamura, E., Miyakawa, A., Kusakari, H., (2003) Int. J. Oral Maxillofac. Implants, 18, p. 357Sertgöz, S., Güvener, S., (1996) J. Prosthet. Dent., 76, p. 165Dargahi, J., Najarian, S., Talebi, M.M., (2005) Biomed. Mater. Eng., 15, p. 317Greco, G.D., Jansen, W.C., Landre-Junior, J., Seraidarian, P.I., (2009) J. Appl. Oral Sci., 17, p. 515Cruz, M., Wassall, T., Toledo, E.M., Barra, L.P., Cruz, S., (2009) Int. J. Oral Maxillofac. Implants, 24, p. 391Ding, X., Zhu, X.H., Liao, S.H., Zhang, X.H., Chen, H., (2009) J. Prosthodont., 18, p. 393Fazi, G., Tellini, S., Vangi, D., Branchi, R., (2011) Int. J. Oral Maxillofac. Implants, 26, p. 752Cruz, M., Wassall, T., Toledo, E.M., Barra, L.P., Lemonge, A.C., (2003) Int. J. Oral Maxillofac. Implants, 18, p. 675Cruz, M., Lourenco, A.F., Toledo, E.M., Da Silva Barra, L.P., De Castro Lemonge, A.C., Wassall, T., (2006) Technol. Health Care, 14, p. 421Inou, N., Iioka, Y., Fujiwara, H., Maki, K., Functional adaptation of mandiular bone (1996) Computational Biomechanics, pp. 345-360. , K. Hayashi, H. Ishikawa, Springer-Verlag TokyoZarone, F., Apicella, A., Nicolais, L., Aversa, R., Sorrentino, R., (2003) Clin. Oral Implants Res., 14, p. 103Tabata, L.F., Rocha, E.P., Barao, V.A., Assuncao, W.G., (2011) Int. J. Oral Maxillofac. Implants, 26, p. 482Assunção, W.G., Gomes, E.A., Barão, V.A., De Sousa, E.A., (2009) Int. J. Oral Maxillofac. Implants, 24, p. 1040Cochran, D.L., (2000) Clin. Oral Implant. Res., 11, p. 33Bonnet, A.S., Postaire, M., Lipinski, P., (2009) Med. Eng. Phys., 31, p. 806O'Mahony, A., Williams, J., Spencer, P., (2001) Clin. Oral Implant. Res., 12, p. 648Assunção, W.G., Gomes, E.A., Barão, V.A., Delben, J.A., Tabata, L.F., De Sousa, E.A., (2010) J. Craniofac. Surg., 21, p. 689Reilly, D.T., Burstein, A.H., (1975) J. Biomech., 8, p. 393Ece, O.I., Nakagawa, Z., (2002) Ceram. Int., 28, p. 131Arioli Filho, J.N., Butignon, L.E., Pereira, R.P., Lucas, M.G., Mollo, Jr.F.A., (2011) J. Appl. Oral Sci., 19, p. 249Cibirka, R.M., Razzoog, M.E., Lang, B.R., Stohler, C.S., (1992) J. Prosthet. Dent., 67, p. 361Hobkirk, J.A., Psarros, K.J., (1992) Int. J. Oral Maxillofac. Implants, 7, p. 345Almeida, E.O., Rocha, E.P., Assunção, W.G., Freitas-Júnior, A.C., Martins-Júnior, M., (2010) Int. J. Oral Maxillofac. Implants, 25, p. 1108Almeida, E.O., Rocha, E.P., Assunção, W.G., Freitas-Júnior, A.C., Anchieta, R.B., (2011) J. Prosthodont., 20, p. 29Naini, R.B., Nokar, S., Borghei, H., Alikhasi, M., (2011) Int. J. Maxillofac. Implants, 26, p. 776Cehreli, M.C., Akkoacaoglu, M., Comert, A., Tekdemir, I., Akca, K., (2005) Clin. Oral Implant. Res., 16, p. 540Akca, K., Akkocaoglu, M., Comert, A., Tekdemir, I., Cehreli, M.C., (2007) Int. J. Maxillofac. Implants, 22, p. 101Teixeira, M.F., Ramalho, S.A., De Mattias Sartori, I.A., Lehmann, R.B., (2010) Implant. Dent., 19, p. 39Hagberg, C., (1987) J. Craniomandib. Disord, 1, p. 162Weinberg, L.A., (1998) Implant. Dent., 7, p. 277Weinberg, L.A., Kruger, B.B., (1995) Int. J. Prosthodont., 8, p. 421Khamis, M.M., Zaki, H.S., Rudy, T.E., (1998) J. Prosthet. Dent., 79, p. 422Rangert, B.O., Jemt, T., Jorneus, L., (1989) Int. J. Oral Maxillofac. Implants, 4, p. 241Kaukinen, J., Edge, M.J., Lang Br, B.R., (1996) J. Prosthet. Dent., 76, p. 50Falcon-Antenucci, R.M., Pellizzer, E.P., De Carvalho, P.S., Goiato, M.C., Noritomi, P.Y., (2010) J. Prosthodont., 19, p. 381Holmgren, E.P., Seckinger, R.J., Kilgren, L.M., Mante, F., (1998) J. Oral Implantol., 24, p. 80Petrie, C.S., Willians Jl, J.L., (2005) Clin. Oral Implants Res., 16, p. 486Gjerdet, N.R., (1980) Acta Odontol. Scand., 38, p. 273Glantz, P.O., (1984) J. Biol. Buccale, 12, p. 3Nilner, K., Lekholm, U., (1985) Swed. Dent. J., 28, p. 85Zarb, G.A., Symington, J.M., (1983) J. Prosthet. Dent., 50, p. 271Cox, J., Zarb, G., (1985) Swed. Dent. J., 28, p. 71Drago, C., Howell, K., (2012) J. Prosthodont., 21, p. 413Chao, Y., Davis, M., Zarb, G.A., Judes, H., (1988) Clin. Mater., 3, p. 309Moffa, J.P., (1982) J. Am. Dent. Assoc., 104, p. 501Pieralini, A.R., Benjamin, C.M., Ribeiro, R.F., Scaf, G., Adabo, G.L., (2010) J. Prosthodont., 19, p. 51

    Non-linear 3d Finite Element Analysis Of Full-arch Implant-supported Fixed Dentures

    No full text
    Despite the necessity for faster clinical protocols for immediate loading of implant-supported dentures, there is a lack of biomechanical studies to confirm the rigid splinting effectiveness. We compared the stress in mandibular full-arch implant-supported fixed dentures under immediate loading through three-dimensional finite element analysis. Edentulous human mandible models were restored with a 4-implant fixed denture. Implants were splinted with a metallic framework and submitted to conventional loading (group A - control), with acrylic resin and submitted to immediate loading (group B), with a metallic framework and submitted to immediate loading (group C), and with acrylic resin and a prefabricated distal bar and submitted to immediate loading (group D). Models were supported by masticatory muscles. A 100-N oblique load was applied on the first molar. Group A presented the lowest stress and implant displacement values, whereas group D showed the highest values. In bone, groups under immediate loading exhibited the highest stress, whereas the group experiencing conventional loading showed an approximately 50% reduction. All groups submitted to immediate loading presented similar stress values in peri-implant bone. The loading protocol influenced the stress and implant displacement, but the design of the fixed denture did not affect the stress in the peri-implant bone. Rigid splinting of implants submitted to immediate loading is not essential for treatment success. © 2014 Elsevier B.V.381306314Nikellis, I., Levi, A., Nicolopoulos, C., (2004) Int. J. Oral Maxillofac. Implants, 19, pp. 116-123Branemark, P.I., Hansson, B.O., Adell, R., Breine, U., Lindstrom, J., Hallen, O., Ohman, A., (1977) Scand. J. Plast. Reconstr. Surg. Suppl., 16, pp. 1-132Ledermann, P.D., Schenk, R.K., Buser, D., (1998) Int. J. Periodontics Restorative Dent., 18, pp. 552-563Babbush, C.A., (1986) Dent. Clin. N. Am., 30, pp. 117-131Schnitman, P.A., Wohrle, P.S., Rubenstein, J.E., (1990) J. Oral Implantol., 16, pp. 96-105Agnini, A., Agnini, A.M., Romeo, D., Chiesi, M., Pariente, L., Stappert, C.F., (2012) Clinical Implant Dentistry and Related ResearchCrespi, R., Vinci, R., Cappare, P., Romanos, G.E., Gherlone, E., (2012) Int. J. Oral Maxillofac. Implants, 27, pp. 428-434Gallucci, G.O., Morton, D., Weber, H.P., (2009) Int. J. Oral Maxillofac. Implants, 24, pp. 132-146. , (Suppl.)Gallucci, G.O., Doughtie, C.B., Hwang, J.W., Fiorellini, J.P., Weber, H.P., (2009) Clin. Oral Implants Res., 20, pp. 601-607Cooper, L.F., De Kok, I.J., Rojas-Vizcaya, F., Pungpapong, P., Chang, S.H., (2007) Compend. Contin. Educ. Dent., 28, pp. 216-225. , (quiz 226)Aparicio, C., Rangert, B., Sennerby, L., (2003) Clin. Implant. Dent. Relat. Res., 5, pp. 57-60Sevimay, M., Turhan, F., Kilicarslan, M.A., Eskitascioglu, G., (2005) J. Prosthet. Dent., 93, pp. 227-234Tada, S., Stegaroiu, R., Kitamura, E., Miyakawa, O., Kusakari, H., (2003) Int. J. Oral Maxillofac. Implants, 18, pp. 357-368Sahin, S., Cehreli, M.C., Yalcin, E., (2002) J. Dent., 30, pp. 271-282Assuncao, W.G., Barao, V.A., Tabata, L.F., De Sousa, E.A., Gomes, E.A., Delben, J.A., (2009) Gerodontology, 26, pp. 273-281Barao, V.A., Assuncao, W.G., Tabata, L.F., De Sousa, E.A., Rocha, E.P., (2008) Comput. Methods Prog. Biomed., 92, pp. 213-223Assuncao, W.G., Tabata, L.F., Barao, V.A., Rocha, E.P., (2008) J. Oral Rehabil., 35, pp. 766-774Barbier, L., Vander Sloten, J., Krzesinski, G., Schepers, E., Van Der Perre, G., (1998) J. Oral Rehabil., 25, pp. 847-858Barao, V.A., Assuncao, W.G., Tabata, L.F., Delben, J.A., Gomes, E.A., De Sousa, E.A., Rocha, E.P., (2009) J. Craniofac. Surg., 20, pp. 1066-1071Barao, V.A., Delben, J.A., Lima, J., Cabral, T., Assuncao, W.G., (2013) J. Biomech., 46, pp. 1312-1320Chun, H.J., Park, D.N., Han, C.H., Heo, S.J., Heo, M.S., Koak, J.Y., (2005) J. Oral Rehabil., 32, pp. 193-205Branemark, P.I., Svensson, B., Van Steenberghe, D., (1995) Clin. Oral Implants Res., 6, pp. 227-231Geng, J.P., Tan, K.B., Liu, G.R., (2001) J. Prosthet. Dent., 85, pp. 585-598Assuncao, W.G., Barao, V.A., Tabata, L.F., Gomes, E.A., Delben, J.A., Dos Santos, P.H., (2009) J. Craniofac. Surg., 20, pp. 1173-1177Srirekha, A., Bashetty, K., (2010) Indian J. Dent. Res., 21, pp. 425-432Antoun, H., Belmon, P., Cherfane, P., Sitbon, J.M., (2012) Int. J. Periodontics Restorative Dent., 32, pp. 1-e9Balshi, T.J., Wolfinger, G.J., (1996) Int. J. Oral Maxillofac. Implants, 11, pp. 106-111Balshi, T.J., Wolfinger, G.J., (1997) Implant. Dent., 6, pp. 83-88Schnitman, P.A., Wohrle, P.S., Rubenstein, J.E., Dasilva, J.D., Wang, N.H., (1997) Int. J. Oral Maxillofac. Implants, 12, pp. 495-503Siirila, H.S., Nordberg, L., Oikarinen, V.J., (1988) J. Prosthet. Dent., 59, pp. 463-467Kammeyer, G., Proussaefs, P., Lozada, J., (2002) J. Prosthet. Dent., 87, pp. 473-476Cooper, L.F., Rahman, A., Moriarty, J., Chaffee, N., Sacco, D., (2002) Int. J. Oral Maxillofac. Implants, 17, pp. 517-525Penarrocha, M., Boronat, A., Garcia, B., (2009) J. Oral Maxillofac. Surg., 67, pp. 1286-1293Devocht, J.W., Goel, V.K., Zeitler, D.L., Lew, D., (2001) J. Oral Maxillofac. Surg., 59, pp. 775-778Sertgoz, A., Guvener, S., (1996) J. Prosthet. Dent., 76, pp. 165-169Pessoa, R.S., Vaz, L.G., Marcantonio, Jr.E., Vander Sloten, J., Duyck, J., Jaecques, S.V., (2010) Int. J. Oral Maxillofac. Implants, 25, pp. 911-919Huang, H.L., Hsu, J.T., Fuh, L.J., Tu, M.G., Ko, C.C., Shen, Y.W., (2008) J. Dent., 36, pp. 409-417Cruz, M., Wassall, T., Toledo, E.M., Da Silva Barra, L.P., Cruz, S., (2009) Int. J. Oral Maxillofac. Implants, 24, pp. 391-403Ding, X., Zhu, X.H., Liao, S.H., Zhang, X.H., Chen, H., (2009) J. Prosthodont., 18, pp. 393-402Fazi, G., Tellini, S., Vangi, D., Branchi, R., (2011) Int. J. Oral Maxillofac. Implants, 26, pp. 752-759Cruz, M., Lourenco, A.F., Toledo, E.M., Da Silva Barra, L.P., De Castro Lemonge, A.C., Wassall, T., (2006) Technol. Health Care, 14, pp. 421-438Cruz, M., Wassall, T., Toledo, E.M., Barra, L.P., Lemonge, A.C., (2003) Int. J. Oral Maxillofac. Implants, 18, pp. 675-684Inou, N., Iioka, Y., Fujiwara, H., Maki, K., Functional adaptation of mandiular bone (1996) Computational Biomechanics, pp. 345-360. , K. Hayashi, H. Ishikawa, Springer-Verlag TokyoO'Mahony, A.M., Williams, J.L., Spencer, P., (2001) Clin. Oral Implants Res., 12, pp. 648-657Weinans, H., Huiskes, R., Grootenboer, H.J., (1993) J. Biomech., 26, pp. 1271-1281Pessoa, R.S., Coelho, P.G., Muraru, L., Marcantonio, Jr.E., Vaz, L.G., Vander Sloten, J., Jaecques, S.V., (2011) Int. J. Oral Maxillofac. Implants, 26, pp. 1279-1287Reilly, D.T., Burstein, A.H., (1975) J. Biomech., 8, pp. 393-405Malo, P., De Araujo Nobre, M., Lopes, A., Moss, S.M., Molina, G.J., (2011) J. Am. Dent. Assoc., 142, pp. 310-320Malo, P., Rangert, B., Nobre, M., (2003) Clin. Implant. Dent. Relat. Res., 5 (SUPPL. 1), pp. 2-9Capelli, M., Zuffetti, F., Del Fabbro, M., Testori, T., (2007) Int. J. Oral Maxillofac. Implants, 22, pp. 639-644De Bruyn, H., Van De Velde, T., Collaert, B., (2008) Clin. Oral Implants Res., 19, pp. 717-723Chiapasco, M., Gatti, C., (2003) Clin. Implant. Dent. Relat. Res., 5, pp. 29-38Degidi, M., Piattelli, A., (2003) J. Periodontol., 74, pp. 225-241Aspenberg, P., Goodman, S., Toksvig-Larsen, S., Ryd, L., Albrektsson, T., (1992) Acta Orthop. Scand., 63, pp. 141-145Goodman, S.B., (1994) Acta Orthop. Scand. Suppl., 258, pp. 1-43Goiato, M.C., Pellizzer, E.P., Dos Santos, D.M., Barao, V.A., De Carvalho, B.M., Magro-Filho, O., Garcia, Jr.I.R., (2009) J. Craniofac. Surg., 20, pp. 2139-2142Szmukler-Moncler, S., Piattelli, A., Favero, G.A., Dubruille, J.H., (2000) Clin. Oral Implants Res., 11, pp. 12-25Tarnow, D.P., Emtiaz, S., Classi, A., (1997) Int. J. Oral Maxillofac. Implants, 12, pp. 319-324Holst, S., Geiselhoeringer, H., Wichmann, M., Holst, A.I., (2008) J. Prosthet. Dent., 100, pp. 173-182Gatti, C., Haefliger, W., Chiapasco, M., (2000) Int. J. Oral Maxillofac. Implants, 15, pp. 383-388Chiapasco, M., (2004) Int. J. Oral Maxillofac. Implants, 19, pp. 76-91. , (Suppl.)Ericsson, I., Nilson, H., Lindh, T., Nilner, K., Randow, K., (2000) Clin. Oral Implants Res., 11, pp. 26-33Malo, P., Rangert, B., Dvarsater, L., (2000) Clin. Implant. Dent. Relat. Res., 2, pp. 138-146Payne, A.G., Tawse-Smith, A., Kumara, R., Thomson, W.M., (2001) Clin. Implant. Dent. Relat. Res., 3, pp. 9-19Marzola, R., Scotti, R., Fazi, G., Schincaglia, G.P., (2007) Clin. Implant. Dent. Relat. Res., 9, pp. 136-143Eriksson, R.A., Albrektsson, T., (1984) J. Oral Maxillofac. Surg., 42, pp. 705-711Lee, H.J., Aparecida De Mattias Sartori, I., Alcantara, P.R., Vieira, R.A., Suzuki, D., Gasparini Kiatake Fontao, F., Tiossi, R., (2012) Implant. Dent., 21, pp. 486-490Teixeira, M.F., Ramalho, S.A., De Mattias Sartori, I.A., Lehmann, R.B., (2010) Implant. Dent., 19, pp. 39-49Al-Sukhun, J., Lindqvist, C., Helenius, M., (2007) J. Biomed. Mater. Res. A, 80, pp. 247-256Niinomi, M., Materials Science and Engineering: A Structural Materials: Properties (1998) Microstruct. Process., 243, pp. 231-236Cochran, D.L., (2000) Clin. Oral Implants Res., 11 (SUPPL. 1), pp. 33-58Bonnet, A.S., Postaire, M., Lipinski, P., (2009) Med. Eng. Phys., 31, pp. 806-815Cehreli, M.C., Akkocaoglu, M., Comert, A., Tekdemir, I., Akca, K., (2005) Clin. Oral Implants Res., 16, pp. 540-548Akca, K., Akkocaoglu, M., Comert, A., Tekdemir, I., Cehreli, M.C., (2007) Int. J. Oral Maxillofac. Implants, 22, pp. 101-109Hagberg, C., (1987) J. Craniomandibular Disord., 1, pp. 162-169Manfredini, D., Bucci, M.B., Sabattini, V.B., Lobbezoo, F., (2011) Cranio, 29, pp. 304-31

    Effects Of Dextrose And Lipopolysaccharide On The Corrosion Behavior Of A Ti-6al-4v Alloy With A Smooth Surface Or Treated With Double-acid-etching

    No full text
    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the I pass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the I corr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections. © 2014 Faverani et al.93Udupa, A., Nahar, P., Shah, S., Kshirsagar, M., Ghongane, B., A comparative study of effects of Omega-3 fatty acids, alpha lipoic acid and vitamin E in Type 2 diabetes mellitus (2013) Ann Med Health Sci Res, 3, pp. 442-446Engebretson, S., Gelato, M., Hyman, L., Michalowicz, B.S., Design features of the Diabetes and Periodontal Therapy Trial (DPTT): A multicenter randomized single-masked clinical trial testing the effect of nonsurgical periodontal therapy on glycosylated hemoglobin (HbA1c) levels in subjects with type 2 diabetes and chronic periodontitis (2013) Contemp Clin Trials, 36, pp. 515-526. , DPTT study groupAkca, K., Sarac, E., Baysal, U., Fanuscu, M., Chang, T.L., Micromorphologic changes around biophysically-stimulated titanium implants in ovariectomized rats (2007) Head Face Med, 3, p. 28Nelson, R.G., Shlossman, M., Budding, L.M., Pettitt, D.J., Saad, M.F., Genco, R.J., Knowler, W.C., Periodontal disease and NIDDM in Pima Indians (1990) Diabetes Care, 13 (8), pp. 836-840Oates, T.W., Huynh-Ba, G., Vargas, A., Alexander, P., Feine, J., A critical review of diabetes, glycemic control, and dental implant therapy (2013) Clin Oral Implants Res, 24, pp. 117-127Manfredi, M., McCullough, M.J., Vescovi, P., Al-Kaarawi, Z.M., Porter, S.R., Update on diabetes mellitus and related oral diseases (2004) Oral Diseases, 10 (4), pp. 187-200. , DOI 10.1111/j.1601-0825.2004.01019.xSkamagas, M., Breen, T.L., LeRoith, D., Update on diabetes mellitus: Prevention, treatment, and association with oral diseases (2008) Oral Diseases, 14 (2), pp. 105-114. , DOI 10.1111/j.1601-0825.2007.01425.xDeshpande, K., Jain, A., Sharma, R., Prashar, S., Jain, R., Diabetes and periodontitis (2010) J Indian Soc Periodontol, 14, pp. 207-212Darnell, J.A., Saunders, M.J., Oral manifestations of the diabetic patient (1990) Tex Dent J, 107, pp. 23-27Lamey, P.J., Darwazeh, A.M., Frier, B.M., Oral disorders associated with diabetes mellitus (1992) Diabet Med, 9, pp. 410-416George, K., Zafiropoulos, G.G., Murat, Y., Hubertus, S., Nisengard, R.J., Clinical and microbiological status of osseointegrated implants (1994) J Periodontol, 65, pp. 766-770Knoernschild, K.L., Bacon, W.L., Fischman, G.S., Campbell, S.D., Effect of pH on endotoxin affinity for metal-ceramic alloys (2001) Journal of Prosthetic Dentistry, 86 (6), pp. 644-649. , DOI 10.1067/mpr.2001.120842Knoernschild, K.L., Tompkins, G.R., Lefebvre, C.A., Griffiths, L.L., Schuster, G.S., Effect of pH on Porphyromonas gingivalis endotoxin affinity for resins (1996) International Journal of Prosthodontics, 9 (3), pp. 239-247Nelson, K.E., Fleischmann, R.D., DeBoy, R.T., Paulsen, I.T., Fouts, D.E., Eisen, J.A., Daugherty, S.C., Fraser, C.M., Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83 (2003) Journal of Bacteriology, 185 (18), pp. 5591-5601. , DOI 10.1128/JB.185.18.5591-5601.2003Robinson, F.G., Knoernschild, K.L., Sterrett, J.D., Tompkins, G.R., Porphyromonas gingivalis endotoxin affinity for dental ceramics (1996) Journal of Prosthetic Dentistry, 75 (2), pp. 217-227Cortada, M., Giner, L.L., Costa, S., Gil, F.J., Rodriguez, D., Planell, J.A., Galvanic corrosion behavior of titanium implants coupled to dental alloys (2000) Journal of Materials Science: Materials in Medicine, 11 (5), pp. 287-293. , DOI 10.1023/A:1008905229522Vieira, A.C., Ribeiro, A.R., Rocha, L.A., Celis, J.P., Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva (2006) Wear, 261 (9), pp. 994-1001. , DOI 10.1016/j.wear.2006.03.031, PII S004316480600113X, TribocorrosionNikolopoulou, F., Saliva and dental implants (2006) Implant Dent, 15, pp. 372-376Chaturvedi, T.P., An overview of the corrosion aspect of dental implants (titanium and its alloys) (2009) Indian J Dent Res, 20, pp. 91-98Correa, C.B., Pires, J.R., Fernandes-Filho, R.B., Sartori, R., Vaz, L.G., Fatigue and fluoride corrosion on Streptococcus mutans adherence to titanium-based implant/component surfaces (2009) J Prosthodont, 18, pp. 382-387Messer, R.L., Seta, F., Mickalonis, J., Brown, Y., Lewis, J.B., Corrosion of phosphate-enriched titanium oxide surface dental implants (TiUnite) under in vitro inflammatory and hyperglycemic conditions (2010) J Biomed Mater Res B Appl Biomater, 92, pp. 525-534Messer, R.L., Tackas, G., Mickalonis, J., Brown, Y., Lewis, J.B., Corrosion of machined titanium dental implants under inflammatory conditions (2009) J Biomed Mater Res B Appl Biomater, 88, pp. 474-481Barao, V.A., Mathew, M.T., Assuncao, W.G., Yuan, J.C., Wimmer, M.A., The role of lipopolysaccharide on the electrochemical behavior of titanium (2011) J Dent Res, 90, pp. 613-618Gittens, R.A., Olivares-Navarrete, R., Tannenbaum, R., Boyan, B.D., Schwartz, Z., Electrical implications of corrosion for osseointegration of titanium implants (2011) J Dent Res, 90, pp. 1389-1397Barao, V.A., Mathew, M.T., Assuncao, W.G., Yuan, J.C., Wimmer, M.A., Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH - An electrochemical study (2012) Clin Oral Implants Res, 23, pp. 1055-1062Zhoua, L.Y., Mitsuo, N., Toshikazu, A., Hisao, F., Todaa, H., Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications (2007) Materials, 48, pp. 380-384Oliveira, N.T., Guastaldi, A.C., Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications (2009) Acta Biomater, 5, pp. 399-405Mareci, D., Chelariu, R., Gordin, D.M., Ungureanu, G., Gloriant, T., Comparative corrosion study of Ti-Ta alloys for dental applications (2009) Acta Biomater, 5, pp. 3625-3639Olmedo, D.G., Paparella, M.L., Brandizzi, D., Cabrini, R.L., Reactive lesions of peri-implant mucosa associated with titanium dental implants: A report of 2 cases (2010) Int J Oral Maxillofac Surg, 39, pp. 503-507Olmedo, D.G., Paparella, M.L., Spielberg, M., Brandizzi, D., Guglielmotti, M.B., Oral mucosa tissue response to titanium cover screws (2012) J Periodontol, 83, pp. 973-980Trisi, P., Lazzara, R., Rebaudi, A., Rao, W., Testori, T., Porter, S.S., Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla (2003) Journal of Periodontology, 74 (7), pp. 945-956. , DOI 10.1902/jop.2003.74.7.945Xavier, S.P., Carvalho, P.S.P., Beloti, M.M., Rosa, A.L., Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments (2003) Journal of Dentistry, 31 (3), pp. 173-180. , DOI 10.1016/S0300-5712(03)00027-7Buser, D., Broggini, N., Wieland, M., Schenk, R.K., Denzer, A.J., Cochran, D.L., Hoffmann, B., Steinemann, S.G., Enhanced bone apposition to a chemically modified SLA titanium surface (2004) Journal of Dental Research, 83 (7), pp. 529-533Tavares, M.G., De Oliveira, P.T., Nanci, A., Hawthorne, A.C., Rosa, A.L., Treatment of a commercial, machined surface titanium implant with H 2SO4/H2O2 enhances contact osteogenesis (2007) Clin Oral Implants Res, 18, pp. 452-458Pai, P.S., Mathew, M.T., Stack, M.M., Rocha, L.A., Some thoughts on neural network modelling of microabrasion-corrosion processes (2008) Tribology International, 41, pp. 672-681Lin, A., Wang, C.J., Kelly, J., Gubbi, P., Nishimura, I., The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo (2009) Int J Oral Maxillofac Implants, 24, pp. 808-816Wennerberg, A., Albrektsson, T., Effects of titanium surface topography on bone integration: A systematic review (2009) Clin Oral Implants Res, 20 (SUPPL. 4), pp. 172-184Gotfredsen, K., Berglundh, T., Lindhe, J., Bone reactions adjacent to titanium implants subjected to static load of different duration. A study in the dog (III) (2001) Clinical Oral Implants Research, 12 (6), pp. 552-558Klokkevold, P.R., Han, T.J., How do smoking, diabetes, and periodontitis affect outcomes of implant treatment? (2007) Int J Oral Maxillofac Implants, 22 (SUPPL.), pp. 173-202Tawil, G., Younan, R., Azar, P., Sleilati, G., Conventional and advanced implant treatment in the type II diabetic patient: Surgical protocol and long-term clinical results (2008) Int J Oral Maxillofac Implants, 23, pp. 744-752Tamam, E., Turkyilmaz, I., Effects of pH and elevated glucose levels on the electrochemical behaviour of dental implants (2012) J Oral Implantol, , http://dx.doi.org/10.1563/AAID-JOI-D-11-00083.1, In-Press. doiMathew, M.T., Barao, V.A., Yuan, J.C., Assuncao, W.G., Sukotjo, C., What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium? (2012) J Mech Behav Biomed Mater, 8, pp. 71-85Barao, V.A., Mathew, M.T., Yuan, J.C., Knoernschild, K.L., Assuncao, W.G., Influence of corrosion on lipopolysaccharide affinity for two different titanium materials (2013) J Prosthet Dent, 110, pp. 462-470Abe, Y., Kokubo, T., Yamamuro, T., Apatite coating on ceramics, metals and polymers utilizing a biological process (1990) Journal of Materials Science: Materials in Medicine, 1 (4), pp. 233-238Zhang, S.M., Qiu, J., Tian, F., Guo, X.K., Zhang, F.Q., Corrosion behavior of pure titanium in the presence of Actinomyces naeslundii (2013) J Mater Sci Mater Med, 24, pp. 1229-1237Faverani, L.P., Barao, V.A., Ramalho-Ferreira, G., Ferreira, M.B., Garcia-Junior, I.R., Effect of bleaching agents and soft drink on titanium surface topography (2014) J Biomed Mater Res B Appl Biomater, 102, pp. 22-30Al Jabbari, Y., Fournelle, R., Ziebert, G., Toth, J., Iacopino, A., Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 2: Metallurgical and microhardness analysis (2008) J Prosthodont, 17, pp. 181-191Assuncao, W.G., Jorge, J.R., Dos Santos, P.H., Barao, V.A., Gomes, E.A., The effect of mechanical cycling and different misfit levels on Vicker's [sic] microhardness of retention screws for single implant-supported prostheses (2011) J Prosthodont, 20, pp. 523-527Bundy, K.J., Corrosion and other electrochemical aspects of biomaterials (1994) Crit Rev Biomed Eng, 22, pp. 139-251Mabilleau, G., Bourdon, S., Joly-Guillou, M.L., Filmon, R., Basle, M.F., Chappard, D., Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium (2006) Acta Biomaterialia, 2 (1), pp. 121-129. , DOI 10.1016/j.actbio.2005.09.004, PII S1742706105001315Morgan, T.D., Wilson, M., The effects of surface roughness and type of denture acrylic on biofilm formation by Streptococcus oralis in a constant depth film fermentor (2001) Journal of Applied Microbiology, 91 (1), pp. 47-53. , DOI 10.1046/j.1365-2672.2001.01338.xBarao, V.A., Yoon, C.J., Mathew, M.T., Yuan, J.C., Wu, C.D., Attachment of Porphyromonas gingivalis to corroded commercially pure titanium and titanium-aluminum-vanadium alloy (2014) J Periodontol, , in pressBollen, C.M.L., Papaioanno, W., Van Eldere, J., Schepers, E., Quirynen, M., Van Steenberghe, D., The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis (1996) Clinical Oral Implants Research, 7 (3), pp. 201-211Yang, C.H., Wang, Y.T., Tsai, W.F., Ai, C.F., Lin, M.C., Effect of oxygen plasma immersion ion implantation treatment on corrosion resistance and cell adhesion of titanium surface (2011) Clin Oral Implants Res, 22, pp. 1426-1432Li, J.L., Sun, M.R., Ma, X.X., Tang, G.Z., Structure and tribological performance of modified layer on Ti6Al4V alloy by plasma-based ion implantation with oxygen (2006) Wear, 261, pp. 1247-1252Affronti, J., Chronic pancreatitis and exocrine insufficiency (2011) Prim Care, 38, pp. 515-537+ixLi, B., Luo, C., Chowdhury, S., Gao, Z.H., Liu, J.L., Parp1 deficient mice are protected from streptozotocin-induced diabetes but not caerulein-induced pancreatitis, independent of the induction of Reg family genes (2013) Regul Pept, 186 C, pp. 83-91Hwang, A.L., Haynes, K., Hwang, W.T., Yang, Y.X., Metformin and survival in pancreatic cancer: A retrospective cohort study (2013) Pancreas, 42, pp. 1054-1059Savari, O., Zielinski, M.C., Wang, X., Misawa, R., Millis, J.M., Distinct function of the head region of human pancreas in the pathogenesis of diabetes (2013) Islets, 5, pp. 226-228Baker, P., Fain, P., Kahles, H., Yu, L., Hutton, J., Genetic determinants of 21-hydroxylase autoantibodies amongst patients of the Type 1 Diabetes Genetics Consortium (2012) J Clin Endocrinol Metab, 97, pp. E1573-E1578Colucci, R., Jimenez, R.E., Farrar, W., Malgor, R., Kohn, L., Coexistence of Cushing syndrome from functional adrenal adenoma and Addison disease from immune-mediated adrenalitis (2012) J Am Osteopath Assoc, 112, pp. 374-379Meyer, G., Hackemann, A., Penna-Martinez, M., Badenhoop, K., What affects the quality of life in autoimmune Addison's disease? (2013) Horm Metab Res, 45, pp. 92-95Tada, S., Stegaroiu, R., Kitamura, E., Miyakawa, O., Kusakari, H., Influence of implant design and bone quality on stress/strain distribution in bone around implants: A 3-dimensional finite element analysis (2003) International Journal of Oral and Maxillofacial Implants, 18 (3), pp. 357-368Winter, W., Klein, D., Karl, M., Effect of model parameters on finite element analysis of micromotions in implant dentistry (2013) J Oral Implantol, 39, pp. 23-2

    A Search for sleptons and gauginos in Z0 decays

    No full text
    Using a data sample corresponding to 10 000 hadronic Z0 decays, we have searched for the production of sleptons and gauginos in the two-prong decays of Z0. No candidate remains after straightforward selections. For neutralinos, we use selection methods developed in our previous search for neutral Higgs particles. The negative results are translated into improved mass limits and parameter constraints on the minimal supersymmetric extension of the standard model

    Charged particle multiplicity distributions in Z0 hadronic decays

    No full text
    This paper presents an analysis of the multiplicity distributions of charged particles produced in Z0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is <nch>=20.71±0.04(stat)±0.77(syst) and the dispersion D=6.28±0.03(stat)±0.43(syst). The data are compared with the results at lower energies and with the predictions of phenomenological models. The Lund parton shower model describes the data reasonably well. The multiplicity distributions show approximate KNO-scaling. They also show positive forward-backward correlations that are strongest in the central region of rapidity and for particles of opposite charge. © 1991 Springer-Verlag

    Search for scalar quarks in Z0 decays

    No full text
    A search has been made for pairs of scalar quarks (squarks) produced in e+e- annihilations at LEP (√s≃MZ0), and decaying into a standard quark and a neutral, non-interacting, stable, massive particle (the lightest supersymmetric particle, LSP). The search has been conducted for differences in the mass of the squark and LSP of 2 GeV/c2 and above. Up squarks with masses below 42 GeV/c2 and down squarks below 43 GeV/c2 were excluded. Six squark flavours degenerate in mass were excluded below 45 GeV/c2.0SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A Measurement of the Partial Width of the Z0^0 Boson into b Quark Pairs

    No full text
    corecore