4 research outputs found

    Predicting Outcomes of Hormone and Chemotherapy in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) Study by Biochemically-inspired Machine Learning

    Get PDF
    Genomic aberrations and gene expression-defined subtypes in the large METABRIC patient cohort have been used to stratify and predict survival. The present study used normalized gene expression signatures of paclitaxel drug response to predict outcome for different survival times in METABRIC patients receiving hormone (HT) and, in some cases, chemotherapy (CT) agents. This machine learning method, which distinguishes sensitivity vs. resistance in breast cancer cell lines and validates predictions in patients; was also used to derive gene signatures of other HT (tamoxifen) and CT agents (methotrexate, epirubicin, doxorubicin, and 5-fluorouracil) used in METABRIC. Paclitaxel gene signatures exhibited the best performance, however the other agents also predicted survival with acceptable accuracies. A support vector machine (SVM) model of paclitaxel response containing genes ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, MAP4, MAPT, NR1I2, SLCO1B3, TUBB1, TUBB4A, and TUBB4B was 78.6% accurate in predicting survival of 84 patients treated with both HT and CT (median survival ≄ 4.4 yr). Accuracy was lower (73.4%) in 304 untreated patients. The performance of other machine learning approaches was also evaluated at different survival thresholds. Minimum redundancy maximum relevance feature selection of a paclitaxel-based SVM classifier based on expression of genes BCL2L1, BBC3, FGF2, FN1, and TWIST1 was 81.1% accurate in 53 CT patients. In addition, a random forest (RF) classifier using a gene signature ( ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, MAP4, MAPT, NR1I2,SLCO1B3, TUBB1, TUBB4A, and TUBB4B) predicted \u3e3-year survival with 85.5% accuracy in 420 HT patients. A similar RF gene signature showed 82.7% accuracy in 504 patients treated with CT and/or HT. These results suggest that tumor gene expression signatures refined by machine learning techniques can be useful for predicting survival after drug therapies

    Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning.

    Get PDF
    Increasingly, the effectiveness of adjuvant chemotherapy agents for breast cancer has been related to changes in the genomic profile of tumors. We investigated correspondence between growth inhibitory concentrations of paclitaxel and gemcitabine (GI50) and gene copy number, mutation, and expression first in breast cancer cell lines and then in patients. Genes encoding direct targets of these drugs, metabolizing enzymes, transporters, and those previously associated with chemoresistance to paclitaxel (n = 31 genes) or gemcitabine (n = 18) were analyzed. A multi-factorial, principal component analysis (MFA) indicated expression was the strongest indicator of sensitivity for paclitaxel, and copy number and expression were informative for gemcitabine. The factors were combined using support vector machines (SVM). Expression of 15 genes (ABCC10, BCL2, BCL2L1, BIRC5, BMF, FGF2, FN1, MAP4, MAPT, NFKB2, SLCO1B3, TLR6, TMEM243, TWIST1, and CSAG2) predicted cell line sensitivity to paclitaxel with 82% accuracy. Copy number profiles of 3 genes (ABCC10, NT5C, TYMS) together with expression of 7 genes (ABCB1, ABCC10, CMPK1, DCTD, NME1, RRM1, RRM2B), predicted gemcitabine response with 85% accuracy. Expression and copy number studies of two independent sets of patients with known responses were then analyzed with these models. These included tumor blocks from 21 patients that were treated with both paclitaxel and gemcitabine, and 319 patients on paclitaxel and anthracycline therapy. A new paclitaxel SVM was derived from an 11-gene subset since data for 4 of the original genes was unavailable. The accuracy of this SVM was similar in cell lines and tumor blocks (70-71%). The gemcitabine SVM exhibited 62% prediction accuracy for the tumor blocks due to the presence of samples with poor nucleic acid integrity. Nevertheless, the paclitaxel SVM predicted sensitivity in 84% of patients with no or minimal residual disease

    Predicting Outcomes of Hormone and Chemotherapy in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) Study by Biochemically-inspired Machine Learning [version 3; referees: 2 approved]

    No full text
    Genomic aberrations and gene expression-defined subtypes in the large METABRIC patient cohort have been used to stratify and predict survival. The present study used normalized gene expression signatures of paclitaxel drug response to predict outcome for different survival times in METABRIC patients receiving hormone (HT) and, in some cases, chemotherapy (CT) agents. This machine learning method, which distinguishes sensitivity vs. resistance in breast cancer cell lines and validates predictions in patients; was also used to derive gene signatures of other HT  (tamoxifen) and CT agents (methotrexate, epirubicin, doxorubicin, and 5-fluorouracil) used in METABRIC. Paclitaxel gene signatures exhibited the best performance, however the other agents also predicted survival with acceptable accuracies. A support vector machine (SVM) model of paclitaxel response containing genes ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, MAP4, MAPT, NR1I2, SLCO1B3, TUBB1, TUBB4A, and TUBB4B was 78.6% accurate in predicting survival of 84 patients treated with both HT and CT (median survival ≄ 4.4 yr). Accuracy was lower (73.4%) in 304 untreated patients. The performance of other machine learning approaches was also evaluated at different survival thresholds. Minimum redundancy maximum relevance feature selection of a paclitaxel-based SVM classifier based on expression of genes BCL2L1, BBC3, FGF2, FN1, and TWIST1 was 81.1% accurate in 53 CT patients. In addition, a random forest (RF) classifier using a gene signature (ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, MAP4, MAPT, NR1I2,SLCO1B3, TUBB1, TUBB4A, and TUBB4B) predicted >3-year survival with 85.5% accuracy in 420 HT patients. A similar RF gene signature showed 82.7% accuracy in 504 patients treated with CT and/or HT. These results suggest that tumor gene expression signatures refined by machine learning techniques can be useful for predicting survival after drug therapies
    corecore