68 research outputs found
Effective-Hamiltonian parameters for \emph{ab initio} energy-level calculations of SrCl:Yb and CsCaBr:Yb
Calculated energy levels from recent \emph{ab initio} studies of the
electronic structure of SrCl:Yb and CsCaBr:Yb are
fitted with a semi-empirical "crystal-field" Hamiltonian, which acts within the
model space . Parameters are obtained for the
minima of the potential-energy curves for each energy level and also for a
range of anion-cation separations. The parameters are compared with published
results parameters fitted to experimental data and to atomic calculations. The
states with significant character give a good approximation of the
impurity-trapped exciton states that appear in the \emph{ab initio}
calculations.Comment: Minor revisio
Experimental comparison of features and classifiers for Android malware detection
National Research Foundation (NRF) Singapor
A Minimal Model of Metabolism Based Chemotaxis
Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis
Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE)
In depth map generation algorithms, parameters settings to yield an accurate disparity map estimation are usually chosen empirically or based on un planned experiments -- Algorithms' performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury's standards -- This work shows a systematic statistical approach including exploratory data analyses on over 14000 images and designs of experiments using 31 depth maps to measure the relative inf uence of the parameters and to fine-tune them based on the number of bad pixels -- The implemented methodology improves the performance of adaptive weight based dense depth map algorithms -- As a result, the algorithm improves from 16.78% to 14.48% bad pixels using a classical exploratory data analysis of over 14000 existing images, while using designs of computer experiments with 31 runs yielded an even better performance by lowering bad pixels from 16.78% to 13
Response of root explants to in vitro cultivation of marketable garlic cultivars
Garlic cultivars are sexually sterile under standard growth conditions, with direct implications for commercial production costs as well as breeding programs. Garlic is propagated commercially via bulblets, which facilitates disease transmission and virus load accumulation over vegetative generations. Tissue culture produces virus-free clones that are more productive, while keeping the desired traits of the cultivar. Consequently, this technique allows studies of garlic genetics as well as guarantees genetic conservation of varieties. We aimed at analyzing the in vitro regeneration of eight marketable cultivars of garlic using root segments as explants. For each genotype, bulblet-derived explants were isolated and introduced into MS medium supplemented with 2,4-D and 2-iP. Calli were transferred to MS medium supplemented with 8.8 mM BAP and 0.1 mM NAA (regeneration medium A), or with 4.6 mM kinetin alone (regeneration medium B). The calli were then evaluated for regeneration frequency after sixty days of in vitro cultivation. The noble cultivar 'Jonas' presented the highest rates of plant regeneration among the cultivars tested. The medium A, which contained auxin and cytokinin, induced the highest regeneration rates of all cultivars. The process described herein is simple, reproducible and can potentially be used as a tool in molecular breeding strategies for other marketable cultivars and genotypes of garlic
Antisymmetric Magnetic Interactions in Oxo-Bridged Copper(II) Bimetallic Systems
The antisymmetric magnetic interaction is studied using correlated wave-function-based calculations in oxo-bridged copper bimetallic complexes. All of the anisotropic multispin Hamiltonian parameters are extracted using spin-orbit state interaction and effective Hamiltonian theory. It is shown that the methodology is accurate enough to calculate the antisymmetric terms, while the small symmetric anisotropic interactions require more sophisticated calculations. The origin of the antisymmetric anisotropy is analyzed, and the effect of geometrical deformations is addressed.
A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort
Impaired semantic knowledge is a characteristic feature of some forms of frontotemporal dementia (FTD), particularly the sporadic disorder semantic dementia. Less is known about semantic cognition in the genetic forms of FTD caused by mutations in the genes MAPT, C9orf72, and GRN. We developed a modified version of the Camel and Cactus Test (mCCT) to investigate the presence of semantic difficulties in a large genetic FTD cohort from the Genetic FTD Initiative (GENFI) study. Six-hundred-forty-four participants were tested with the mCCT including 67 MAPT mutation carriers (15 symptomatic, and 52 in the presymptomatic period), 165 GRN mutation carriers (33 symptomatic, 132 presymptomatic), and 164 C9orf72 mutation carriers (56 symptomatic, 108 presymptomatic) and 248 mutation-negative members of FTD families who acted as a control group. The presymptomatic mutation carriers were further split into those early and late in the presymptomatic period (more than vs. within 10 years of expected symptom onset). Groups were compared using a linear regression model, adjusting for age and education, with bootstrapping. Performance on the mCCT had a weak negative correlation with age (rho = −0.20) and a weak positive correlation with education (rho = 0.13), with an overall abnormal score (below the 5th percentile of the control population) being below 27 out of a total of 32. All three of the symptomatic mutation groups scored significantly lower than controls: MAPT mean 22.3 (standard deviation 8.0), GRN 24.4 (7.2), C9orf72 23.6 (6.5) and controls 30.2 (1.6). However, in the presymptomatic groups, only the late MAPT and late C9orf72 mutation groups scored lower than controls (28.8 (2.2) and 28.9 (2.5) respectively). Performance on the mCCT correlated strongly with temporal lobe volume in the symptomatic MAPT mutation group (rho > 0.80). In the C9orf72 group, mCCT score correlated with both bilateral temporal lobe volume (rho > 0.31) and bilateral frontal lobe volume (rho > 0.29), whilst in the GRN group mCCT score correlated only with left frontal lobe volume (rho = 0.48). This study provides evidence for presymptomatic impaired semantic knowledge in genetic FTD. The different neuroanatomical associations of the mCCT score may represent distinct cognitive processes causing deficits in different groups: loss of core semantic knowledge associated with temporal lobe atrophy (particularly in the MAPT group), and impaired executive control of semantic information associated with frontal lobe atrophy. Further studies will be helpful to address the longitudinal change in mCCT performance and the exact time at which presymptomatic impairment occurs
Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia
Background There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker.
Methods Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-C linical Dementia Rating scale and MRI. Spearman's correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures.
Results Plasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, -61.3 to 54.6), MAPT mutations (12.7, -33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe.
Conclusions Raised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials
- …