10 research outputs found

    Phos-tag analysis of Rab10 phosphorylation by LRRK2:a powerful assay for assessing kinase function and inhibitors

    Get PDF
    Autosomal dominant mutations that activate the leucine-rich repeat kinase-2 (LRRK2) cause inherited Parkinson's disease. Recent work has revealed that LRRK2 directly phosphorylates a conserved Thr/Ser residue in the effector-binding switch-II motif of a number of Rab GTPase proteins, including Rab10. Here we describe a facile and robust method to assess phosphorylation of endogenous Rab10 in mouse embryonic fibroblasts (MEFs), lung and spleen derived B Cells, based on the ability of the Phos-tag reagent to retard the electrophoretic mobility of LRRK2 phosphorylated Rab10. We exploit this assay to show that phosphorylation of Rab10 is ablated in kinase inactive LRRK2[D2017A] knock-in MEFs and mouse lung, demonstrating that LRRK2 is the major Rab10 kinase in these cells/tissue. We also establish that the Phos-tag assay can be deployed to monitor the impact that activating LRRK2 pathogenic (G2019S and R1441G) knock-in mutations have on stimulating Rab10 phosphorylation. We show that upon addition of LRRK2 inhibitors, Rab10 is dephosphorylated within 1-2 min, markedly more rapidly than the Ser935 and Ser1292 biomarker sites that require 40-80 min. Furthermore, we find that phosphorylation of Rab10 is suppressed in LRRK2[S910A, S935A] knock-in MEFs indicating that phosphorylation of Ser910 and Ser935 and potentially 14-3-3 binding play a role in facilitating the phosphorylation of Rab10 by LRRK2 in vivo. The Rab Phos-tag assay has the potential to significantly aide with evaluating the effect that inhibitors, mutations and other factors have on the LRRK2 signalling pathway

    The effect of LRRK2 loss-of-function variants in humans

    Get PDF
    Analysis of large genomic datasets, including gnomAD, reveals that partial LRRK2 loss of function is not strongly associated with diseases, serving as an example of how human genetics can be leveraged for target validation in drug discovery. Human genetic variants predicted to cause loss-of-function of protein-coding genes (pLoF variants) provide natural in vivo models of human gene inactivation and can be valuable indicators of gene function and the potential toxicity of therapeutic inhibitors targeting these genes(1,2). Gain-of-kinase-function variants in LRRK2 are known to significantly increase the risk of Parkinson's disease(3,4), suggesting that inhibition of LRRK2 kinase activity is a promising therapeutic strategy. While preclinical studies in model organisms have raised some on-target toxicity concerns(5-8), the biological consequences of LRRK2 inhibition have not been well characterized in humans. Here, we systematically analyze pLoF variants in LRRK2 observed across 141,456 individuals sequenced in the Genome Aggregation Database (gnomAD)(9), 49,960 exome-sequenced individuals from the UK Biobank and over 4 million participants in the 23andMe genotyped dataset. After stringent variant curation, we identify 1,455 individuals with high-confidence pLoF variants in LRRK2. Experimental validation of three variants, combined with previous work(10), confirmed reduced protein levels in 82.5% of our cohort. We show that heterozygous pLoF variants in LRRK2 reduce LRRK2 protein levels but that these are not strongly associated with any specific phenotype or disease state. Our results demonstrate the value of large-scale genomic databases and phenotyping of human loss-of-function carriers for target validation in drug discovery.Peer reviewe

    Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry

    Get PDF
    Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase

    The Michael J. Fox Foundation’s Strategies for Accelerating Translation of LRRK2 into Therapies for Parkinson Disease

    No full text
    Since 2005, The Michael J. Fox Foundation for Parkinson’s Research (MJFF) has invested significant funding and non-funding effort to accelerate research and drug development activity around the Parkinson disease (PD)-associated protein LRRK2. MJFF has spearheaded multiple public/private pre-competitive collaborations that have contributed to our understanding of LRRK2 function; de-risked potential safety questions around the therapeutic use of LRRK2 kinase inhibitors; and generated critical research tools, biosamples, and data for the field. Several LRRK2-targeted therapies are now in human testing due to the hard work of so many in the PD community. In this perspective, we present a holistic description and model of how our Foundation’s support targeted important barriers to LRRK2 research and helped move the field into clinical trials

    The Michael J. Fox Foundation for Parkinson’s Research Strategy to Advance Therapeutic Development of PINK1 and Parkin

    No full text
    The role of mitochondria in Parkinson’s disease (PD) has been investigated since the 1980s and is gaining attention with recent advances in PD genetics research. Mutations in PRKN and PTEN-Induced Putative Kinase 1 (PINK1) are well-established causes of autosomal recessive early-onset PD. Genetic and biochemical studies have revealed that PINK1 and Parkin proteins function together in the same biological pathway to govern mitochondrial quality control. These proteins have also been implicated in the regulation of innate and adaptive immunity and other mitochondrial functions. Additionally, structural studies on Parkin have delineated an activation mechanism and have identified druggable regions that are currently being explored by academic and industry groups. To de-risk therapeutic development for these genetic targets, The Michael J. Fox Foundation for Parkinson’s Research (MJFF) has deployed a strategic funding and enabling framework that brings together the research community to discuss important breakthroughs and challenges in research on PINK1-Parkin biology, supports collaborative initiatives to further our understanding within this field and develops high-quality research tools and assays that are widely available to all researchers. The Foundation’s efforts are leading to significant advances in understanding of the underlying biology of these genes, proteins and pathways and in the development of Parkinson’s therapies

    Loss of Leucine-rich Repeat Kinase 2 (LRRK2) in Rats Leads to Progressive Abnormal Phenotypes in Peripheral Organs

    No full text
    The objective of this study was to evaluate the pathology time course of the LRRK2 knockout rat model of Parkinson’s disease at 1-, 2-, 4-, 8-, 12-, and 16-months of age. The evaluation consisted of histopathology and ultrastructure examination of selected organs, including the kidneys, lungs, spleen, heart, and liver, as well as hematology, serum, and urine analysis. The LRRK2 knockout rat, starting at 2-months of age, displayed abnormal kidney staining patterns and/or morphologic changes that were associated with higher serum phosphorous, creatinine, cholesterol, and sorbitol dehydrogenase, and lower serum sodium and chloride compared to the LRRK2 wild-type rat. Urinalysis indicated pronounced changes in LRRK2 knockout rats in urine specific gravity, total volume, urine potassium, creatinine, sodium, and chloride that started as early as 1- to 2-months of age. Electron microscopy of 16-month old LRRK2 knockout rats displayed an abnormal kidney, lung, and liver phenotype. In contrast, there were equivocal or no differences in the heart and spleen of LRRK2 wild-type and knockout rats. These findings partially replicate data from a recent study in 4-month old LRRK2 knockout rats and expand the analysis to demonstrate that the renal and possibly lung and liver abnormalities progress with age. The characterization of LRRK2 knockout rats may prove to be extremely valuable in understanding potential safety liabilities of LRRK2 kinase inhibitor therapeutics for treating Parkinson’s disease

    Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease

    Get PDF
    AbstractRecessively inherited loss-of-function mutations in the PTEN-induced putative kinase 1(Pink1), DJ-1 (Park7) and Parkin (Park2) genes are linked to familial cases of early-onset Parkinson's disease (PD). As part of its strategy to provide more tools for the research community, The Michael J. Fox Foundation for Parkinson's Research (MJFF) funded the generation of novel rat models with targeted disruption ofPink1, DJ-1 or Parkin genes and determined if the loss of these proteins would result in a progressive PD-like phenotype. Pathological, neurochemical and behavioral outcome measures were collected at 4, 6 and 8months of age in homozygous KO rats and compared to wild-type (WT) rats. Both Pink1 and DJ-1 KO rats showed progressive nigral neurodegeneration with about 50% dopaminergic cell loss observed at 8 months of age. ThePink1 KO and DJ-1 KO rats also showed a two to three fold increase in striatal dopamine and serotonin content at 8 months of age. Both Pink1 KO and DJ-1 KO rats exhibited significant motor deficits starting at 4months of age. However, Parkin KO rats displayed normal behaviors with no neurochemical or pathological changes. These results demonstrate that inactivation of the Pink1 or DJ-1 genes in the rat produces progressive neurodegeneration and early behavioral deficits, suggesting that these recessive genes may be essential for the survival of dopaminergic neurons in the substantia nigra (SN). These MJFF-generated novel rat models will assist the research community to elucidate the mechanisms by which these recessive genes produce PD pathology and potentially aid in therapeutic development

    ATLANTIC BIRD TRAITS: a data set of bird morphological traits from the Atlantic forests of South America

    Get PDF
    Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n = 191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive data set on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales, from individual to community, and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or teaching and educational activities. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ

    ATLANTIC BIRD TRAITS

    No full text
    Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n = 191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive data set on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales, from individual to community, and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or teaching and educational activities. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ
    corecore