232 research outputs found

    Unusual giant magnetostriction in the ferrimagnet Gd2/3_{2/3}Ca1/3_{1/3}MnO3_3

    Get PDF
    We report an unusual giant linear magnetostrictive effect in the ferrimagnet Gd2/3_{2/3}Ca1/3_{1/3}MnO3_3 (TcT_{c} \approx80 K). Remarkably, the magnetostriction, negative at high temperature (TTcT \approx T_{c}), becomes positive below 15 K when the magnetization of the Gd sublattice overcomes the magnetization of the Mn sublattice. A rather simple model where the magnetic energy competes against the elastic energy gives a good account of the observed results and confirms that Gd plays a crucial role in this unusual observation. Unlike previous works in manganites where only striction associated with 3dd Mn orbitals is considered, our results show that the lanthanide 4ff orbitals related striction can be very important too and it cannot be disregarded.Comment: 6 pages, 3 figure

    Heat capacity studies of Ce and Rh site substitution in the heavy fermion antiferromagnet CeRhIn_5;: Short-range magnetic interactions and non-Fermi-liquid behavior

    Full text link
    In heavy fermion materials superconductivity tends to appear when long range magnetic order is suppressed by chemical doping or applying pressure. Here we report heat capacity measurements on diluted alloyes of the heavy fermion superconductor CeRhIn_5;. Heat capacity measurements have been performed on CeRh_{1-y}Ir_{y}In_5; (y <= 0.10) and Ce_{1-x}La_{x}Rh_{1-y}Ir_{y}In_5; (x <= 0.50) in applied fields up to 90 kOe to study the affect of doping and magnetic field on the magnetic ground state. The magnetic phase diagram of CeRh_{0.9}Ir_{0.1}In_5; is consistent with the magnetic structure of CeRhIn_5; being unchanged by Ir doping. Doping of Ir in small concentrations is shown to slightly increase the antiferromagnetic transition temperature T_{N} (T_{N}=3.8 K in the undoped sample). La doping which causes disorder on the Ce sublattice is shown to lower T_{N} with no long range order observed above 0.34 K for Ce_{0.50}La_{0.50}RhIn_5;. Measurements on Ce_{0.50}La_{0.50}RhIn_5; show a coexistence of short range magnetic order and non-Fermi-liquid behavior. This dual nature of the Ce 4f-electrons is very similar to the observed results on CeRhIn_5; when long range magnetic order is suppressed at high pressure.Comment: 8 pages, 9 figure

    Magnetic Structure Of Cerhin5 As A Function Of Pressure And Temperature

    Get PDF
    We report magnetic neutron-diffraction and electrical resistivity studies on single crystals of the heavy-fermion antiferromagnet CeRhIn5 at pressures up to 2.3 GPa. These experiments show that the staggered moment of Ce and the incommensurate magnetic structure change weakly with applied pressure up to 1.63 GPa, where resistivity, specific heat and nuclear quadrupole resonance measurements confirm the presence of bulk superconductivity. This work places important constraints on an interpretation of the relationship between antiferromagnetism and unconventional superconductivity in CeRhIn 5.692244031244036Heffner, R.H., Norman, M.R., (1996) Comments Condens. Matter Phys., 17, p. 361Stewart, G.R., (2001) Rev. Mod. Phys., 73, p. 797Mathur, N.D., Grosche, F.M., Julian, S.R., Walker, I.R., Freye, D.M., Haselwimmer, R.K.W., Lonzarich, G.G., (1998) Nature (London), 394, p. 39Sato, N.K., Aso, N., Miyake, K., Shiina, R., Thalmeier, P., Varelogiannis, G., Geibel, C., Komatsubara, T., (2001) Nature (London), 410, p. 340Fisk, Z., Ott, H.R., Smith, J.L., (1986) Proceedings of the Sixth Annual Conference, , Los Alamos, NM, USA, (unpublished)Fisk, Z., Hess, D.W., Pethick, C.J., Pines, D., Smith, J.L., Thompson, J.D., Willis, J.O., (1988) Science, 239, p. 4835Miyake, K., Schmitt-Rink, S., Varma, C.M., (1986) Phys. Rev. B, 34, p. 6554Monthoux, P., Balatsky, A.V., Pines, D., (1991) Phys. Rev. Lett., 67, p. 3448Coleman, P., Pepin, C., (2002) Physica B, 312-313, p. 383Walker, I.R., Grosche, F.M., Freye, D.M., Lonzarich, G.G., (1997) Physica C, 282-287, p. 303Morin, P., Vettier, C., Flouquet, J., Konczykowski, M., Lassailly, Y., Mignot, J.M., Welp, U., (1988) J. Low Temp. Phys., 70, p. 377Jaccard, D., Wilhelm, H., Alami-Yadri, K., Vargoz, E., (1999) Physica B, 259-261, p. 1Jaccard, D., Behnia, K., Sierro, J., (1992) Phys. Lett. A, 163, p. 475Thompson, J.D., Parks, R.D., Borges, H., (1986) J. Magn. Magn. Mater., 54-57, p. 377Grosche, F.M., Julian, S.R., Mathur, N.D., Lonzarich, G.G., (1996) Physica B, 223-224, p. 50Movshovich, R., Graf, T., Mandrus, D., Thompson, J.D., Smith, J.L., Fisk, Z., (1996) Phys. Rev. B, 53, p. 8241Petrovic, C., Moshopoulou, E.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2000) Phys. Rev. Lett., 84, p. 4986Petrovic, C., Movshovich, R., Jaime, M., Pagliuso, P.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2001) Europhys. Lett., 53, p. 354Petrovic, C., Pagliuso, P.G., Hundley, M.F., Movshovich, R., Sarrao, J.L., Thompson, J.D., Fisk, Z., Monthoux, P., (2001) J. Phys.: Condens. Matter, 13, pp. L337Zheng, G.-Q., Tanabe, K., Mito, T., Kawasaki, S., Kitaoka, Y., Aoki, D., Haga, Y., Onuki, Y., (2001) Phys. Rev. Lett., 86, p. 4664Movshovich, R., Jaime, M., Thompson, J.D., Petrovic, C., Fisk, Z., Pagliuso, P.G., Sarrao, J.L., (2001) Phys. Rev. Lett., 86, p. 5152Fisher, R.A., Bouquet, F., Phillips, N.E., Hundley, M.F., Pagliuso, P.G., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2002) Phys. Rev. B, 65, p. 224509Kawasaki, S., Mito, T., Kawasaki, Y., Zheng, G.-Q., Kitaoka, Y., Aoki, D., Haga, Y., Onuki, Y., cond-mat/0303123 (unpublished)Mito, T., Kawasaki, S., Zheng, G.-Q., Kawasaki, Y., Ishida, K., Kitaoka, Y., Aoki, D., Onuki, Y., (2001) Phys. Rev. B, 63, p. 220507Mito, T., Kawasaki, S., Zheng, G.-Q., Kawasaki, Y., Ishida, K., Kitaoka, Y., Aoki, D., Onuki, Y., (2002) Physica B, 312-313, p. 16Izawa, K., Yamaguchi, H., Matsuda, Y., Shishido, H., Settai, R., Onuki, Y., (2001) Phys. Rev. Lett., 87, p. 057002Pagliuso, P.G., Petrovic, C., Movshovich, R., Hall, D., Hundley, M.F., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Phys. Rev. B, 64, p. 100503Zapf, V.S., Freeman, E.J., Bauer, E.D., Petricka, J., Sirvent, C., Frederick, N.A., Dickey, R.P., Maple, M.B., (2002) Phys. Rev. B, 65, p. 014506Moshopoulou, E.G., Fisk, Z., Sarrao, J.L., Thompson, J.D., (2001) J. Solid State Chem., 158, p. 25Curro, N.J., Hammel, P.C., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2000) Phys. Rev. B, 62, pp. R6100Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., Erwin, R.W., (2000) Phys. Rev. B, 62, p. 14621(2003) Phys. Rev. B, 67, pp. 099903EMito, T., Kawasaki, S., Kawasaki, Y., Zheng, G.-Q., Kitaoka, Y., Aoki, D., Haga, Y., Onuki, Y., (2003) Phys. Rev. Lett., 90, p. 077004Bao, W., Trevino, S.F., Lynn, J.W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2002) Appl. Phys. A Mater. Sci. Process. A, 74, p. 557Majumdar, S., Balakrishnan, G., Lees, M.R., Paul, D.McK., McIntyre, G.J., (2002) Phys. Rev. B, 66, p. 212502Kawasaki, S., (2002) Phys. Rev. B, 65, p. 020504Shishido, H., Settai, R., Araki, S., Ueda, T., Inada, Y., Kobayashi, T.C., Muramatsu, T., Onuki, Y., (2002) Phys. Rev. B, 66, p. 214510Kumar, R.S., Kohlmonn, H., Light, B.E., Cornelius, A.L., Raghavan, V., Darling, T.W., Sarrao, J.L., cond-mat/0209005 (unpublished)Moshopoulou, E.G., Fisk, Z., Sarrao, J.L., Thompson, J.D., (2001) J. Solid State Chem., 25, p. 158Pagliuso, P.G., Petrovic, C., Movshovich, R., Hall, D., Hundley, M.F., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Phys. Rev. B, 64, p. 100503Thompson, J.D., (1984) Rev. Sci. Instrum., 55, p. 231Bao, W., Aeppli, G., Lynn, J.W., Pagliuso, P.G., Sarrao, J.L., Hundley, M.F., Thompson, J.D., Fisk, Z., (2002) Phys. Rev. B, 65, p. 100505Cooper, M.J., (1968) Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., A6, p. 624Cooper, M.J., Nathans, R., (1968) Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., A6, p. 619Mignot, J.-M., Bourdarot, F., Llobet, A., Abanov, Ar., private communicationBlume, M., Freeman, A.J., Watson, R.E., (1962) J. Chem. Phys., 37, p. 1245Christianson, A.D., Lawrence, J.M., Pagliuso, R.G., Moreno, N.O., Sarrao, J.L., Thompson, J.D., Riseborough, P.S., Lacerda, A.H., (2002) Phys. Rev. B, 66, p. 193102Curro, N.J., Sarrao, J.L., Thompson, J.D., Pagliuso, P.G., Kos, S., Abanov, Ar., Pines, D., (2003) Phys. Rev. Lett., 90, p. 227202Knebel, G., Braithwaite, D., Canfield, P.C., Lapertot, G., Flouquet, J., (2002) High Press. Res., 22, p. 16

    Localized f electrons in CexLa1-xRhIn5: dHvA Measurements

    Full text link
    Measurements of the de Haas-van Alphen effect in CexLa1-xRhIn5 reveal that the Ce 4f electrons remain localized for all x, with the mass enhancement and progressive loss of one spin from the de Haas-van Alphen signal resulting from spin fluctuation effects. This behavior may be typical of antiferromagnetic heavy fermion compounds, inspite of the fact that the 4f electron localization in CeRhIn5 is driven, in part, by a spin-density wave instability.Comment: 4 pages, 4 figures, submitted to PR

    Formation of superdense hadronic matter in high energy heavy-ion collisions

    Get PDF
    We present the detail of a newly developed relativistic transport model (ART 1.0) for high energy heavy-ion collisions. Using this model, we first study the general collision dynamics between heavy ions at the AGS energies. We then show that in central collisions there exists a large volume of sufficiently long-lived superdense hadronic matter whose local baryon and energy densities exceed the critical densities for the hadronic matter to quark-gluon plasma transition. The size and lifetime of this matter are found to depend strongly on the equation of state. We also investigate the degree and time scale of thermalization as well as the radial flow during the expansion of the superdense hadronic matter. The flow velocity profile and the temperature of the hadronic matter at freeze-out are extracted. The transverse momentum and rapidity distributions of protons, pions and kaons calculated with and without the mean field are compared with each other and also with the preliminary data from the E866/E802 collaboration to search for experimental observables that are sensitive to the equation of state. It is found that these inclusive, single particle observables depend weakly on the equation of state. The difference between results obtained with and without the nuclear mean field is only about 20\%. The baryon transverse collective flow in the reaction plane is also analyzed. It is shown that both the flow parameter and the strength of the ``bounce-off'' effect are very sensitive to the equation of state. In particular, a soft equation of state with a compressibility of 200 MeV results in an increase of the flow parameter by a factor of 2.5 compared to the cascade case without the mean field. This large effect makes it possible to distinguish the predictions from different theoretical models and to detect the signaturesComment: 55 pages, latex, + 39 figures available upon reques

    Metastability Driven by Soft Quantum Fluctuation Modes

    Full text link
    The semiclassical Euclidean path integral method is applied to compute the low temperature quantum decay rate for a particle placed in the metastable minimum of a cubic potential in a {\it finite} time theory. The classical path, which makes a saddle for the action, is derived in terms of Jacobian elliptic functions whose periodicity establishes the one-to-one correspondence between energy of the classical motion and temperature (inverse imaginary time) of the system. The quantum fluctuation contribution has been computed through the theory of the functional determinants for periodic boundary conditions. The decay rate shows a peculiar temperature dependence mainly due to the softening of the low lying quantum fluctuation eigenvalues. The latter are determined by solving the Lam\`{e} equation which governs the fluctuation spectrum around the time dependent classical bounce.Comment: Journal of Low Temperature Physics (2008) Publisher: Springer Netherland

    Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications.

    Get PDF
    BACKGROUND: Ectasia development occurs due to a chronic corneal biomechanical decompensation or weakness, resulting in stromal thinning and corneal protrusion. This leads to corneal steepening, increase in astigmatism, and irregularity. In corneal refractive surgery, the detection of mild forms of ectasia pre-operatively is essential to avoid post-operative progressive ectasia, which also depends on the impact of the procedure on the cornea. METHOD: The advent of 3D tomography is proven as a significant advancement to further characterize corneal shape beyond front surface topography, which is still relevant. While screening tests for ectasia had been limited to corneal shape (geometry) assessment, clinical biomechanical assessment has been possible since the introduction of the Ocular Response Analyzer (Reichert Ophthalmic Instruments, Buffalo, USA) in 2005 and the Corvis ST (Oculus Optikgerate GmbH, Wetzlar, Germany) in 2010. Direct clinical biomechanical evaluation is recognized as paramount, especially in detection of mild ectatic cases and characterization of the susceptibility for ectasia progression for any cornea. CONCLUSIONS: The purpose of this review is to describe the current state of clinical evaluation of corneal biomechanics, focusing on the most recent advances of commercially available instruments and also on future developments, such as Brillouin microscopy.(undefined)info:eu-repo/semantics/publishedVersio
    corecore