Heat capacity studies of Ce and Rh site substitution in the heavy
fermion antiferromagnet CeRhIn_5;: Short-range magnetic interactions and
non-Fermi-liquid behavior
In heavy fermion materials superconductivity tends to appear when long range
magnetic order is suppressed by chemical doping or applying pressure. Here we
report heat capacity measurements on diluted alloyes of the heavy fermion
superconductor CeRhIn_5;. Heat capacity measurements have been performed on
CeRh_{1-y}Ir_{y}In_5; (y <= 0.10) and Ce_{1-x}La_{x}Rh_{1-y}Ir_{y}In_5; (x <=
0.50) in applied fields up to 90 kOe to study the affect of doping and magnetic
field on the magnetic ground state. The magnetic phase diagram of
CeRh_{0.9}Ir_{0.1}In_5; is consistent with the magnetic structure of CeRhIn_5;
being unchanged by Ir doping. Doping of Ir in small concentrations is shown to
slightly increase the antiferromagnetic transition temperature T_{N} (T_{N}=3.8
K in the undoped sample). La doping which causes disorder on the Ce sublattice
is shown to lower T_{N} with no long range order observed above 0.34 K for
Ce_{0.50}La_{0.50}RhIn_5;. Measurements on Ce_{0.50}La_{0.50}RhIn_5; show a
coexistence of short range magnetic order and non-Fermi-liquid behavior. This
dual nature of the Ce 4f-electrons is very similar to the observed results on
CeRhIn_5; when long range magnetic order is suppressed at high pressure.Comment: 8 pages, 9 figure