2,178 research outputs found

    Draft Genome Sequence of Streptomyces phaeoluteigriseus DSM41896

    Get PDF
    The draft genome for the type strain Streptomyces phaeoluteigriseus DSM41896 (ISP 5182) is reported. It was classified as a member of the Streptomyces violaceusniger clade; however, a polyphasic study showed it was a separate species based on its distinct spore morphology and 16S rRNA sequence. The genome sequence confirms it as a separate species

    Complete genome sequences of Vibrio cholera: specific bacteriophages 24 and X29

    Get PDF
    The complete genomes of two Vibrio cholerae bacteriophages of potential interest for cholera bacteriophage (phage) therapy were sequenced and annotated. The genome size of phage 24 is 44,395 bp encoding 71 putative proteins, and that of phage X29 is 41,569 bp encoding 68 putative proteins

    Draft genome sequences of three terrestrial isoprene-degrading Rhodococcus strains

    Get PDF
    Isoprene is produced in abundance by plants and constitutes a carbon source for microbes. The genomes of three isoprene degraders isolated from tree leaves or soil from the campus of the University of East Anglia were sequenced. These high-GC-content isolates are actinobacteria belonging to the genus Rhodococcus

    Safe and complete contig assembly via omnitigs

    Full text link
    Contig assembly is the first stage that most assemblers solve when reconstructing a genome from a set of reads. Its output consists of contigs -- a set of strings that are promised to appear in any genome that could have generated the reads. From the introduction of contigs 20 years ago, assemblers have tried to obtain longer and longer contigs, but the following question was never solved: given a genome graph GG (e.g. a de Bruijn, or a string graph), what are all the strings that can be safely reported from GG as contigs? In this paper we finally answer this question, and also give a polynomial time algorithm to find them. Our experiments show that these strings, which we call omnitigs, are 66% to 82% longer on average than the popular unitigs, and 29% of dbSNP locations have more neighbors in omnitigs than in unitigs.Comment: Full version of the paper in the proceedings of RECOMB 201

    The hidden perils of read mapping as a quality assessment tool in genome sequencing

    Get PDF
    This article provides a comparative analysis of the various methods of genome sequencing focusing on verification of the assembly quality. The results of a comparative assessment of various de novo assembly tools, as well as sequencing technologies, are presented using a recently completed sequence of the genome of Lactobacillus fermentum 3872. In particular, quality of assemblies is assessed by using CLC Genomics Workbench read mapping and Optical mapping developed by OpGen. Over-extension of contigs without prior knowledge of contig location can lead to misassembled contigs, even when commonly used quality indicators such as read mapping suggest that a contig is well assembled. Precautions must also be undertaken when using long read sequencing technology, which may also lead to misassembled contigs
    corecore