836 research outputs found
Energy balance closure for the LITFASS-2003 experiment
In the first part, this paper synthesises the main results from a series of previous studies on the closure of the local energy balance at low-vegetation sites during the LITFASS-2003 experiment. A residual of up to 25% of the available energy has been found which cannot be fully explained either by the measurement uncertainty of the single components of the surface energy balance or by the length of the flux-averaging period. In the second part, secondary circulations due to heterogeneities in the surface characteristics (roughness, thermal and moisture properties) are discussed as a possible cause for the observed energy balance non-closure. This hypothesis seems to be supported from the fluxes derived from area-averaging measurement techniques (scintillometers, aircraft)
Nitrogen cycling in shallow low oxygen coastal waters off Peru from nitrite and nitrate nitrogen and oxygen isotopes
O2 minimum zones (OMZ) of the world's oceans are important locations for microbial dissimilatory NO3- reduction and subsequent loss of combined nitrogen (N) to biogenic N2 gas. This is particularly so when the OMZ is coupled to a region of high productivity leading to high rates of N-loss as found in the coastal upwelling region off Peru. Stable N isotope ratios (and O in the case of NO3- and NO2-) can be used as natural tracers of OMZ N-cycling because of distinct kinetic isotope effects associated with microbially-mediated N-cycle transformations. Here we present NO2- and NO3- stable isotope data from the nearshore upwelling region off Callao, Peru. Subsurface O2 was generally depleted below about 30 m depth with O2 less than 10 ÎŒM, while NO2- concentrations were high, ranging from 6 to 10 ÎŒM and NO3- was in places strongly depleted to near 0 ÎŒM. We observed for the first time, a positive linear relationship between NO2- ÎŽ15N and ÎŽ18O at our coastal stations, analogous to that of NO3- N and O isotopes during assimilatory and dissimilatory reduction. This relationship is likely the result of rapid NO2- turnover due to higher organic matter flux in these coastal upwelling waters. No such relationship was observed at offshore stations where slower turnover of NO2- facilitates dominance of isotope exchange with water. We also evaluate the overall isotope fractionation effect for N-loss in this system using several approaches that vary in their underlying assumptions. While there are differences in apparent fractionation factor (Δ) for N-loss as calculated from the ÎŽ15N of [NO3-], DIN, or biogenic N2, values for Δ are generally much lower than previously reported, reaching as low as 6.5â°. A possible explanation is the influence of sedimentary N-loss at our inshore stations which incurs highly suppressed isotope fractionation
Global oceanic production of nitrous oxide
We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N2O) to estimate the concentration of biologically produced N2O and N2O production rates in the ocean on a global scale. Our approach to estimate the N2O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass.We estimate that the oceanic N2O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N2O are not taken into account in our study. The largest amount of subsurface N2O is produced in the upper 500 m of the water column. The estimated global annual subsurface N2O production ranges from 3.1+/-0.9 to 3.4+/-0.9 Tg N yr^-1. This is in agreement with estimates of the global N2O emissions to the atmosphere and indicates that a N2O source in the mixed layer is unlikely. The potential future development of the oceanic N2O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed
Improving temperatureâbased predictions of the timing of flowering in cotton
Key management recommendations for cotton (Gossypium hirsutum L.) management require estimates of the timing of crop phenology. Most commonly growing day degree (DD) (thermal time) approaches are used. Currently, across many cotton production regions, there is no consistent approach to predicting first square and flower timing. Day degree approaches vary considerably, with base thresholds different (12.0â15.6 °C) with no consistency using an optimum temperature threshold (i.e., temperature where development ceases to increase). As cotton is grown in variable and changing climates, and cultivars change, there is a need to ensure the accuracy of this approach for predicting timing of flowering for assisting cotton management. In this study new functions to predict first square and first flower were developed and validated using data collected in multiple seasons and regions (Australia and the United States). Earlier controlled environment studies that monitored crop development were used to assess in more detail how temperatures were affecting early cotton development. New DD functions developed predicted first square and first flower better than the existing Australian and U.S. approaches. The best performing functions had base temperatures like those of existing U.S. functions (15.6 °C) and an optimum threshold temperature of 32.0 °C. New universal DD targets for first square (343 DD [°C]) and first flower (584 DD) were developed. Controlled environment studies supported this base temperature outcome; however, it was less clear that 32.0 °C was the optimum threshold temperature from these data. Precise predictions of cotton development will facilitate accurate growth stage assessments and hence better cotton management decisions
Validating CFD predictions of flow over an escarpment using ground-based and airborne measurement devices
Micrometeorological observations from a tower, an eddy-covariance (EC) station and an unmanned aircraft system (UAS) at the WINSENT test-site are used to validate a computational fluid dynamics (CFD) model, driven by a mesoscale model. The observation site is characterised by a forested escarpment in a complex terrain. A two-day measurement campaign with a flow almost perpendicular to the escarpment is analysed. The first day is dominated by high wind speeds, while, on the second one, calm wind conditions are present. Despite some minor differences, the flow structure, analysed in terms of horizontal wind speeds, wind direction and inclination angles shows similarities for both days. A real-time strategy is used for the CFD validation with the UAS measurement, where the model follows spatially and temporally the aircraft. This strategy has proved to be successful. Stability indices such as the potential temperature and the bulk Richardson number are calculated to diagnose atmospheric boundary layer (ABL) characteristics up to the highest flight level. The calculated bulk Richardson values indicate a dynamically unstable region behind the escarpment and near the ground for both days. At higher altitudes, the ABL is returning to a near neutral state. The same characteristics are found in the model but only for the first day. The second day, where shear instabilities are more dominant, is not well simulated. UAS proves its great value for sensing the flow over complex terrains at high altitudes and we demonstrate the usefulness of UAS for validating and improving models
Crossover from non-thermal to thermal photoluminescence from metals excited by ultrashort light pulses
Photoluminescence from metal nanostructures following intense ultrashort
illumination is a fundamental aspect of light-matter interactions.
Surprisingly, many of its basic characteristics are under ongoing debate. Here,
we resolve the majority of these debates by providing the most complete
theoretical framework to date that describes this phenomenon, and support it by
experimental confirmation. Specifically, we identify aspects of the emission
that are characteristic to either non-thermal or thermal emission, in
particular, differences in the spectral and electric field-dependence of these
two contributions to the emission. Overall, non-thermal emission is
characteristic of the early stages of light emission, while the later stages
show thermal characteristics. The former dominate only for moderately high
illumination intensities for which the electron temperature reached after
thermalization is close to room temperature. The theory is then complemented by
experimental evidence that demonstrates the novel aspects of our
considerations
Nitrous oxide dynamics in low oxygen regions of the Pacific: insights from the MEMENTO database
The Eastern Tropical Pacific (ETP) is believed to be one of the largest marine sources of the greenhouse gas nitrous oxide N2O). Future N2Oemissions from the ETP are highly uncertain because oxygen minimum zones are expected to expand, affecting both regional production and consumption of N2O. Here we assess three primary uncertainties in how N2O may respond to changing O2 levels: (1) the relationship between N2O production and O2 (is it linear or exponential at low O2 concentrations?), (2) the cutoff point at which net N2O production switches to net N2O consumption (uncertainties in this parameterization can lead to differences in model ETP N2O concentrations of more than 20%), and (3) the rate of net N2O consumption at low O2. Based on the MEMENTO database, which is the largest N2O dataset currently available, we find that N2O production in the ETP increases linearly rather than exponentially with decreasing O2. Additionally, net N2O consumption switches to net N2O production at ~ 10 ÎŒM O2, a value in line with recent studies that suggest consumption occurs on a larger scale than previously thought. N2O consumption is on the order of 0.129 mmol N2O mâ3 yrâ1 in the PeruâChile Undercurrent. Based on these findings, it appears that recent studies substantially overestimated N2O production in the ETP. In light of expected deoxygenation, future N2O production is still uncertain, but due to higher-than-expected consumption levels, it is possible that N2Oconcentrations may decrease rather than increase as oxygen minimum zones expand
- âŠ