982 research outputs found

    Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer

    Get PDF
    Cancer cells are known to execute reprogramed metabolism of glucose, amino acids and lipids. Here, we report a significant role of cholesterol metabolism in cancer metastasis. By using label-free Raman spectromicroscopy, we found an aberrant accumulation of cholesteryl ester in human pancreatic cancer specimens and cell lines, mediated by acyl-CoA cholesterol acyltransferase-1 (ACAT-1) enzyme. Expression of ACAT-1 showed a correlation with poor patient survival. Abrogation of cholesterol esterification, either by an ACAT-1 inhibitor or by shRNA knockdown, significantly suppressed tumor growth and metastasis in an orthotopic mouse model of pancreatic cancer. Mechanically, ACAT-1 inhibition increased intracellular free cholesterol level, which was associated with elevated endoplasmic reticulum stress and caused apoptosis. Collectively, our results demonstrate a new strategy for treating metastatic pancreatic cancer by inhibiting cholesterol esterification

    Characterization of the Conus bullatus genome and its venom-duct transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The venomous marine gastropods, cone snails (genus <it>Conus</it>), inject prey with a lethal cocktail of conopeptides, small cysteine-rich peptides, each with a high affinity for its molecular target, generally an ion channel, receptor or transporter. Over the last decade, conopeptides have proven indispensable reagents for the study of vertebrate neurotransmission. <it>Conus bullatus </it>belongs to a clade of <it>Conus </it>species called <it>Textilia</it>, whose pharmacology is still poorly characterized. Thus the genomics analyses presented here provide the first step toward a better understanding the enigmatic <it>Textilia </it>clade.</p> <p>Results</p> <p>We have carried out a sequencing survey of the <it>Conus bullatus </it>genome and venom-duct transcriptome. We find that conopeptides are highly expressed within the venom-duct, and describe an <it>in silico </it>pipeline for their discovery and characterization using RNA-seq data. We have also carried out low-coverage shotgun sequencing of the genome, and have used these data to determine its size, genome-wide base composition, simple repeat, and mobile element densities.</p> <p>Conclusions</p> <p>Our results provide the first global view of venom-duct transcription in any cone snail. A notable feature of <it>Conus bullatus </it>venoms is the breadth of A-superfamily peptides expressed in the venom duct, which are unprecedented in their structural diversity. We also find SNP rates within conopeptides are higher compared to the remainder of <it>C. bullatus </it>transcriptome, consistent with the hypothesis that conopeptides are under diversifying selection.</p

    What Does It Drive the Relationship Between Suicides and Economic Conditions? New Evidence from Spain

    Get PDF
    In this paper we analyse suicides across the 17 Spanish regions over the period 2002?2013. In doing so, we estimate count panel data models considering gender differences taking into account before and during economic crisis periods. A range of aggregate socioeconomic regional-level factors have been considered. Our empirical results show that: (1) a socioeconomic urban?rural suicide differentials exist, (2) there exists a Mediterranean suicide pattern; and (3) unemployment levels have a marked importance during the crisis period. The results of this study may have usefulness for suicide prevention in Spain

    Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity

    Get PDF
    AIMS/HYPOTHESIS: Insulin controls glucose metabolism via multiple signalling pathways, including the phosphatidylinositol 3-kinase (PI3K) pathway in muscle and adipose tissue. The protein/lipid phosphatase Pten (phosphatase and tensin homologue deleted on chromosome 10) attenuates PI3K signalling by dephosphorylating the phosphatidylinositol 3,4,5-trisphosphate generated by PI3K. The current study was aimed at investigating the effect of haploinsufficiency for Pten on insulin-stimulated glucose uptake. MATERIALS AND METHODS: Insulin sensitivity in Pten heterozygous (Pten(+/−)) mice was investigated in i.p. insulin challenge and glucose tolerance tests. Glucose uptake was monitored in vitro in primary cultures of myocytes from Pten(+/−) mice, and in vivo by positron emission tomography. The phosphorylation status of protein kinase B (PKB/Akt), a downstream signalling protein in the PI3K pathway, and glycogen synthase kinase 3β (GSK3β), a substrate of PKB/Akt, was determined by western immunoblotting. RESULTS: Following i.p. insulin challenge, blood glucose levels in Pten(+/−) mice remained depressed for up to 120 min, whereas glucose levels in wild-type mice began to recover after approximately 30 min. After glucose challenge, blood glucose returned to normal about twice as rapidly in Pten(+/−) mice. Enhanced glucose uptake was observed both in Pten(+/−) myocytes and in skeletal muscle of Pten(+/−) mice by PET. PKB and GSK3β phosphorylation was enhanced and prolonged in Pten(+/−) myocytes. CONCLUSIONS/INTERPRETATION: Pten is a key negative regulator of insulin-stimulated glucose uptake in vitro and in vivo. The partial reduction of Pten due to Pten haploinsufficiency is enough to elicit enhanced insulin sensitivity and glucose tolerance in Pten(+/−) mice

    A miRNA-Target Prediction Case Study

    Get PDF
    Giansanti, V., Castelli, M., Beretta, S., & Merelli, I. (2019). Comparing Deep and Machine Learning Approaches in Bioinformatics: A miRNA-Target Prediction Case Study. In V. V. Krzhizhanovskaya, M. H. Lees, P. M. A. Sloot, J. J. Dongarra, J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, ... R. Lam (Eds.), Computational Science – ICCS 2019: 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III (pp. 31-44). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11538 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-22744-9_3MicroRNAs (miRNAs) are small non-coding RNAs with a key role in the post-transcriptional gene expression regularization, thanks to their ability to link with the target mRNA through the complementary base pairing mechanism. Given their role, it is important to identify their targets and, to this purpose, different tools were proposed to solve this problem. However, their results can be very different, so the community is now moving toward the deployment of integration tools, which should be able to perform better than the single ones. As Machine and Deep Learning algorithms are now in their popular years, we developed different classifiers from both areas to verify their ability to recognize possible miRNA-mRNA interactions and evaluated their performance, showing the potentialities and the limits that those algorithms have in this field. Here, we apply two deep learning classifiers and three different machine learning models to two different miRNA-mRNA datasets, of predictions from 3 different tools: TargetScan, miRanda, and RNAhybrid. Although an experimental validation of the results is needed to better confirm the predictions, deep learning techniques achieved the best performance when the evaluation scores are taken into account.authorsversionpublishe

    Glycosylation of Erythrocyte Spectrin and Its Modification in Visceral Leishmaniasis

    Get PDF
    Using a lectin, Achatinin-H, having preferential specificity for glycoproteins with terminal 9-O-acetyl sialic acid derivatives linked in α2-6 linkages to subterminal N-acetylgalactosamine, eight distinct disease-associated 9-O-acetylated sialoglycoproteins was purified from erythrocytes of visceral leishmaniaisis (VL) patients (RBCVL). Analyses of tryptic fragments by mass spectrometry led to the identification of two high-molecular weight 9-O-acetylated sialoglycoproteins as human erythrocytic α- and β-spectrin. Total spectrin purified from erythrocytes of VL patients (spectrinVL) was reactive with Achatinin-H. Interestingly, along with two high molecular weight bands corresponding to α- and β-spectrin another low molecular weight 60 kDa band was observed. Total spectrin was also purified from normal human erythrocytes (spectrinN) and insignificant binding with Achatinin-H was demonstrated. Additionally, this 60 kDa fragment was totally absent in spectrinN. Although the presence of both N- and O-glycosylations was found both in spectrinN and spectrinVL, enhanced sialylation was predominantly induced in spectrinVL. Sialic acids accounted for approximately 1.25 kDa mass of the 60 kDa polypeptide. The demonstration of a few identified sialylated tryptic fragments of α- and β-spectrinVL confirmed the presence of terminal sialic acids. Molecular modelling studies of spectrin suggest that a sugar moiety can fit into the potential glycosylation sites. Interestingly, highly sialylated spectrinVL showed decreased binding with spectrin-depleted inside-out membrane vesicles of normal erythrocytes compared to spectrinN suggesting functional abnormality. Taken together this is the first report of glycosylated eythrocytic spectrin in normal erythrocytes and its enhanced sialylation in RBCVL. The enhanced sialylation of this cytoskeleton protein is possibly related to the fragmentation of spectrinVL as evidenced by the presence of an additional 60 kDa fragment, absent in spectrinN which possibly affects the biology of RBCVL linked to both severe distortion of erythrocyte development and impairment of erythrocyte membrane integrity and may provide an explanation for their sensitivity to hemolysis and anemia in VL patients

    Review of laser speckle contrast techniques for visualizing tissue perfusion

    Get PDF
    When a diffuse object is illuminated with coherent laser light, the backscattered light will form an interference pattern on the detector. This pattern of bright and dark areas is called a speckle pattern. When there is movement in the object, the speckle pattern will change over time. Laser speckle contrast techniques use this change in speckle pattern to visualize tissue perfusion. We present and review the contribution of laser speckle contrast techniques to the field of perfusion visualization and discuss the development of the techniques

    A Corticothalamic Circuit Model for Sound Identification in Complex Scenes

    Get PDF
    The identification of the sound sources present in the environment is essential for the survival of many animals. However, these sounds are not presented in isolation, as natural scenes consist of a superposition of sounds originating from multiple sources. The identification of a source under these circumstances is a complex computational problem that is readily solved by most animals. We present a model of the thalamocortical circuit that performs level-invariant recognition of auditory objects in complex auditory scenes. The circuit identifies the objects present from a large dictionary of possible elements and operates reliably for real sound signals with multiple concurrently active sources. The key model assumption is that the activities of some cortical neurons encode the difference between the observed signal and an internal estimate. Reanalysis of awake auditory cortex recordings revealed neurons with patterns of activity corresponding to such an error signal

    Regulation of DNA Repair Mechanism in Human Glioma Xenograft Cells both In Vitro and In Vivo in Nude Mice

    Get PDF
    Glioblastoma Multiforme (GBM) is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR) are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Non-homologous end joining (NHEJ) repair mechanism plays a major role in double strand break (DSB) repair in mammalian cells.Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU) and MMP9-cathepsin B (pMC) shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls.Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemo-resistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from clinical stand point
    corecore