150 research outputs found

    Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach

    Get PDF
    Not Availableonsumers are increasingly interested in nutritious, safe and healthy muscle food products with reduced salt and fat that benefit their well-being. Hence, food processors are constantly in search of natural bioactive ingredients that offer health benefits beyond their nutritive values without affecting the quality of the products. Mushrooms are considered as next-generation healthy food components. Owing to their low content of fat, high-quality proteins, dietary fibre and the presence of nutraceuticals, they are ideally preferred in formulation of low-caloric functional foods. There is a growing trend to fortify muscle food with edible mushrooms to harness their goodness in terms of nutritive, bioactive and therapeutic values. The incorporation of mushrooms in muscle foods assumes significance, as it is favourably accepted by consumers because of its fibrous structure that mimics the texture with meat analogues offering unique taste and umami flavour. This review outlines the current knowledge in the literature about the nutritional richness, functional bioactive compounds and medicinal values of mushrooms offering various health benefits. Furthermore, the effects of functional ingredients of mushrooms in improving the quality and sensory attributes of nutritionally superior and next-generation healthier muscle food products are also highlighted in this paper.Not Availabl

    On dynamic network entropy in cancer

    Get PDF
    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network to induce a stochastic dynamics on the network, we here demonstrate that cancer cells are characterised by an increase in the dynamic network entropy, compared to cells of normal physiology. Using a fundamental relation between the macroscopic resilience of a dynamical system and the uncertainty (entropy) in the underlying microscopic processes, we argue that cancer cells will be more robust to random gene perturbations. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local dynamic entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local network dynamics. In particular, we also find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in the dynamic network entropy. In summary, our results support the view that the observed increased robustness of cancer cells to perturbation and therapy may be due to an increase in the dynamic network entropy that allows cells to adapt to the new cellular stresses. Conversely, genes that exhibit local flux entropy decreases in cancer may render cancer cells more susceptible to targeted intervention and may therefore represent promising drug targets.Comment: 10 pages, 3 figures, 4 tables. Submitte

    Type 2 Diabetes Is Associated with Altered NF-κB DNA Binding Activity, JNK Phosphorylation, and AMPK Phosphorylation in Skeletal Muscle after LPS

    Get PDF
    Systemic inflammation is often associated with impaired glucose metabolism. We therefore studied the activation of inflammatory pathway intermediates that interfere with glucose uptake during systemic inflammation by applying a standardised inflammatory stimulus in vivo. After ethical approval, informed consent and a thorough physical examination, 10 patients with type 2 diabetes and 10 participants with normal glucose tolerance (NGT) were given an intravenous bolus of E. coli lipopolysaccharide (LPS) of 0.3 ng/kg. Skeletal muscle biopsies and plasma were obtained at baseline and two, four and six hours after LPS. Nuclear factor (NF)-κB p65 DNA binding activity measured by ELISA, tumor necrosis factor-α and interleukin-6 mRNA expression analysed by real time reverse transcription polymerase chain reaction, and abundance of inhibitor of NF-κB (IκB)α, phosphorylated c-Jun-N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase measured by Western blotting were detected in muscle biopsy samples. Relative to subjects with NGT, patients with type 2 diabetes exhibited a more pronounced increase in NF-κB binding activity and JNK phosphorylation after LPS, whereas skeletal muscle cytokine mRNA expression did not differ significantly between groups. AMPK phosphorylation increased in volunteers with NGT, but not in those with diabetes. The present findings indicate that pathways regulating glucose uptake in skeletal muscle may be involved in the development of inflammation-associated hyperglycemia. Patients with type 2 diabetes exhibit changes in these pathways, which may ultimately render such patients more prone to develop dysregulated glucose disposal in the context of systemic inflammation

    What Does It Drive the Relationship Between Suicides and Economic Conditions? New Evidence from Spain

    Get PDF
    In this paper we analyse suicides across the 17 Spanish regions over the period 2002?2013. In doing so, we estimate count panel data models considering gender differences taking into account before and during economic crisis periods. A range of aggregate socioeconomic regional-level factors have been considered. Our empirical results show that: (1) a socioeconomic urban?rural suicide differentials exist, (2) there exists a Mediterranean suicide pattern; and (3) unemployment levels have a marked importance during the crisis period. The results of this study may have usefulness for suicide prevention in Spain

    Identification of microRNA-mRNA modules using microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA expression and are involved in numerous cellular processes. Consequently, miRNAs are an important component of gene regulatory networks and an improved understanding of miRNAs will further our knowledge of these networks. There is a many-to-many relationship between miRNAs and mRNAs because a single miRNA targets multiple mRNAs and a single mRNA is targeted by multiple miRNAs. However, most of the current methods for the identification of regulatory miRNAs and their target mRNAs ignore this biological observation and focus on miRNA-mRNA pairs.</p> <p>Results</p> <p>We propose a two-step method for the identification of many-to-many relationships between miRNAs and mRNAs. In the first step, we obtain miRNA and mRNA clusters using a combination of miRNA-target mRNA prediction algorithms and microarray expression data. In the second step, we determine the associations between miRNA clusters and mRNA clusters based on changes in miRNA and mRNA expression profiles. We consider the miRNA-mRNA clusters with statistically significant associations to be potentially regulatory and, therefore, of biological interest.</p> <p>Conclusions</p> <p>Our method reduces the interactions between several hundred miRNAs and several thousand mRNAs to a few miRNA-mRNA groups, thereby facilitating a more meaningful biological analysis and a more targeted experimental validation.</p

    The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor

    Get PDF
    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as ‘membrane transmitter to the cell’ is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR

    Agrobacterium-mediated transformation systems of Primula vulgaris

    Get PDF
    Background: Genetic transformation is a valuable tool and an important procedure in plant functional genomics contributing to gene discovery, allowing powerful insights into gene function and genetically controlled characteristics. Primulaceae species provide one of the best-known examples of heteromorphic flower development, a breeding system which has attracted considerable attention, including that of Charles Darwin. Molecular approaches, including plant transformation give the best opportunity to define and understand the role of genes involved in floral heteromorphy in the common primrose, Primula vulgaris, along with other Primula species. Results: Two transformation systems have been developed in P. vulgaris. The first system, Agrobacterium-mediated vacuum infiltration of seedlings, enables the rapid testing of transgenes, transiently in planta. GUS expression was observed in the cotyledons, true leaves, and roots of Primula seedlings. The second system is based on Agrobacterium tumefaciens infection of pedicel explants with an average transformation efficiency of 4.6%. This transformation system, based on regeneration and selection of transformants within in vitro culture, demonstrates stable transgene integration and transmission to the next generation. Conclusion: The two transformation systems reported here will aid fundamental research into important traits in Primula. Although, stable integration of transgenes is the ultimate goal for such analyses, transient gene expression via Agrobacterium-mediated DNA transfer, offers a simple and fast method to analyse transgene functions. The second system describes, for the first time, stable Agrobacterium-mediated transformation of Primula vulgaris, which will be key to characterising the genes responsible for the control of floral heteromorphy

    Diverse and Active Roles for Adipocytes During Mammary Gland Growth and Function

    Get PDF
    The mammary gland is unique in its requirement to develop in close association with a depot of adipose tissue that is commonly referred to as the mammary fat pad. As discussed throughout this issue, the mammary fat pad represents a complex stromal microenvironment that includes a variety of cell types. In this article we focus on adipocytes as local regulators of epithelial cell growth and their function during lactation. Several important considerations arise from such a discussion. There is a clear and close interrelationship between different stromal tissue types within the mammary fat pad and its adipocytes. Furthermore, these relationships are both stage- and species-dependent, although many questions remain unanswered regarding their roles in these different states. Several lines of evidence also suggest that adipocytes within the mammary fat pad may function differently from those in other fat depots. Finally, past and future technologies present a variety of opportunities to model these complexities in order to more precisely delineate the many potential functions of adipocytes within the mammary glands. A thorough understanding of the role for this cell type in the mammary glands could present numerous opportunities to modify both breast cancer risk and lactation performance

    Regulation of DNA Repair Mechanism in Human Glioma Xenograft Cells both In Vitro and In Vivo in Nude Mice

    Get PDF
    Glioblastoma Multiforme (GBM) is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR) are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Non-homologous end joining (NHEJ) repair mechanism plays a major role in double strand break (DSB) repair in mammalian cells.Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU) and MMP9-cathepsin B (pMC) shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls.Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemo-resistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from clinical stand point
    corecore