520 research outputs found
Intraclass Clustering-Based CNN Approach for Detection of Malignant Melanoma
This paper describes the process of developing a classification model for the effective detection of malignant melanoma, an aggressive type of cancer in skin lesions. Primary focus is given on fine-tuning and improving a state-of-the-art convolutional neural network (CNN) to obtain the optimal ROC-AUC score. The study investigates a variety of artificial intelligence (AI) clustering techniques to train the developed models on a combined dataset of images across data from the 2019 and 2020 IIM-ISIC Melanoma Classification Challenges. The models were evaluated using varying cross-fold validations, with the highest ROC-AUC reaching a score of 99.48%
Evaluating regional emission estimates using the TRACE-P observations
Measurements obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment are used in conjunction with regional modeling analysis to evaluate emission estimates for Asia. A comparison between the modeled values and the observations is one method to evaluate emissions. Based on such analysis it is concluded that the inventory performs well for the light alkanes, CO, ethyne, SO2, and NOâ. Furthermore, based on model skill in predicting important photochemical species such as Oâ, HCHO, OH, HOâ, and HNOâ, it is found that the emissions inventories are of sufficient quality to support preliminary studies of ozone production. These are important finding in light of the fact that emission estimates for many species (such as speciated NMHCs and BC) for this region have only recently been estimated and are highly uncertain. Using a classification of the measurements built upon trajectory analysis, we compare observed species distributions and ratios of species to those modeled and to ratios estimated from the emissions inventory. It is shown that this technique can reconstruct a spatial distribution of propane/benzene that looks remarkably similar to that calculated from the emissions inventory. A major discrepancy between modeled and observed behavior is found in the Yellow Sea, where modeled values are systematically underpredicted. The integrated analysis suggests that this may be related to an underestimation of emissions from the domestic sector. The emission is further tested by comparing observed and measured species ratios in identified megacity plumes. Many of the model derived ratios (e.g., BC/CO, SOâ/CâHâ) fall within âŒ25% of those observed and all fall outside of a factor of 2.5. (See Article file for details of the abstract.)Department of Civil and Environmental EngineeringAuthor name used in this publication: Wang, T
Recommended from our members
Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment
Data obtained during the TRACE-P experiment is used to evaluate how well the CFORS/STEM-2K1 regional-scale chemical transport model is able to represent the aircraft observations. Thirty-one calculated trace gas and aerosol parameters are presented and compared to the in situ data. The regional model is shown to accurately predict many of the important features observed. The mean values of all the model parameters in the lowest 1 km are predicted within ±30% of the observed values. The correlation coefficients (R) for the meteorological parameters are found to be higher than those for the trace species. For example, for temperature, R \u3e 0.98. Among the trace species, ethane, propane, and ozone show the highest values (0.8 \u3c R \u3c 0.9), followed by CO, SO2, and NOy, NO and NO2 had the lowest values (R \u3c 0.4). Analyses of pollutant transport into the Yellow Sea by frontal events are presented and illustrate the complex nature of outflow. Biomass burning from SE Asia is transported in the warm conveyor belt at altitudes above âŒ2 km and at latitudes below 30N. Outflow of pollution emitted along the east coast of China in the postfrontal regions is typically confined to the lower âŒ2 km and results in high concentrations with plume-like features in the Yellow Sea. During these situations the model underpredicts CO and black carbon (among other species). An analysis of ozone production in this region is also presented. In and around the highly industrialized regions of East Asia, where fossil fuel usage dominates, ozone is NMHC-limited. South of âŒ30-35N, ozone production is NOx-limited, reflecting the high NMHC/NOx ratios due to the large contributions to the emissions from biomass burning, biogenics sources, and biofuel usage in central China and SE Asia. Copyright 2003 by the American Geophysical Union
Seasonal dependence of peroxy radical concentrations at a northern hemisphere marine boundary layer site during summer and winter: evidence for photochemical activity in winter
International audiencePeroxy radicals (HO2+?RO2) were measured at the Weybourne Atmospheric Observatory (52° N, 1° E), Norfolk using a PEroxy Radical Chemical Amplifier (PERCA) during the winter and summer of 2002. The peroxy radical diurnal cycles showed a marked difference between the winter and summer campaigns with maximum concentrations of 12 pptv at midday in the summer and maximum concentrations as high as 30 pptv (10 min averages) in winter at night. The corresponding nighttime peroxy radical concentrations were not as high in summer (3 pptv). The peroxy radical concentration shows a distinct anti-correlation with increasing NOx during the daylight hours. At night, peroxy radicals increase with increasing NOx indicative of the role of NO3 chemistry. The average diurnal cycles for net ozone production, N(O3) show a large variability in ozone production, P(O3), and a large ozone loss, L(O3) in summer relative to winter. For a daylight average, net ozone production in summer than winter (1.51±0.5 ppbv h?1 and 1.11±0.47 ppbv h?1 respectively) but summer shows more variability of (meteorological) conditions than winter. The variability in NO concentration has a much larger effect on N(O3) than the peroxy radical concentrations. Photostationary state (PSS) calculations show an NO2 lifetime of 5 min in summer and 21 min in the winter, implying that steady-state NO-NO2 ratios are not always attained during the winter months. The results show an active peroxy radical chemistry at night and the ability of winter to make oxidant. The net effect of this with respect to production of ozone in winter is unclear owing to the breakdown in the photostationary state
Seasonal dependence of peroxy radical concentrations at a Northern hemisphere marine boundary layer site during summer and winter: evidence for radical activity in winter
Peroxy radicals (HO2+ÎŁ RO2) were measured at the Weybourne Atmospheric Observatory (52° N, 1° E), Norfolk using a PEroxy Radical Chemical Amplifier (PERCA) during the winter and summer of 2002. The peroxy radical diurnal cycles showed a marked difference between the winter and summer campaigns with maximum concentrations of 12 pptv at midday in the summer and maximum concentrations as high as 30 pptv (10 min averages) in winter at night. The corresponding nighttime peroxy radical concentrations were not as high in summer (3 pptv). The peroxy radical concentration shows a distinct anti-correlation with increasing NOx during the daylight hours. At night, peroxy radicals increase with increasing NOx indicative of the role of NO3 chemistry. The average diurnal cycles for net ozone production, N(O3) show a large variability in ozone production, P(O3), and a large ozone loss, L(O3) in summer relative to winter. For a daylight average, net ozone production in summer was higher than winter (1.51±0.5 ppbv hâ1 and 1.11±0.47 ppbv hâ1, respectively). The variability in NO concentration has a much larger effect on N(O3) than the peroxy radical concentrations. Photostationary state (PSS) calculations show an NO2 lifetime of 5 min in summer and 21 minutes in the winter, implying that steady-state NO-NO2 ratios are not always attained during the winter months. The results show an active peroxy radical chemistry at night and that significant oxidant levels are sustained in winter. The net effect of this with respect to production of ozone in winter is unclear owing to the breakdown in the photostationary state
Seabeam and seismic reflection imaging of the tectonic regime of the Andean continental margin off Peru (4°S to 10°S)
Suite à une campagne géophysique réalisée au large de la cÎte du Perou (croisiÚre Seaperc du R/V "Jean Charcot", juillet 1986), les auteurs proposent une nouvelle interprétation des structures caractérisant la pente continentale de la région étudiée. D'autre part, ils considÚrent que cette marge active est une marge active en extension ou bien une marge d'effondrement qui développe un complexe d'accrétion induit par les effondrements de la partie médiane de la pente
Recommended from our members
An overview of ISCAT 2000
The Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT) took place over the timer period of 15 November to 31 December in the year 2000. The study location was the Amundsen Scott Station in Antarctica. ISCAT 2000 defines the second phase of a program designed to explore tropospheric chemistry in Antarctica. As in 1998, the 2000 ISCAT study revealed a strong oxidizing environment at South Pole (SP). During the 2000 investigation, however, the suite of measurements was greatly expanded. These new measurements established the recycling of reactive nitrogen as a critical component of this unique environment. This paper first presents the historical background leading up to the ISCAT 2000 observations; then it focuses on providing a summary of the year 2000 results and contrasts these with those recorded during 1998. Important developments made during the 2000 study included the recording of SP data for several species being emitted from the snowpack. These included NO, H 2O2 and CH2O. In this context, eddy-diffusion flux measurements provided the first quantitative estimates of the SP NO and NOx snow-to-atmosphere fluxes. This study also revealed that HNO 3 and HO2NO2 were major sink species for HOx and NOx radicals. And, it identified the critical factors responsible for SP NO levels exceeding those at other polar sites by nearly an order of magnitude. Finally, it reports on the levels of gas phase sulfur species and provides evidence indicating that the absence of DMS at SP is most likely due to its greatly shorten chemical lifetime in the near vicinity of the plateau. It is proposed that this is due to the influence of NO on the distribution of OH in the lower free troposphere over a region that extends well beyond the plateau itself. Details related to each of the above findings plus others can be found in the 11 accompanying Special Issue papers. © 2004 Elsevier Ltd. All rights reserved
Static stretching of the hamstring muscle for injury prevention in football codes: a systematic review
Purpose: Hamstring injuries are common among football players. There is still disagreement regarding prevention. The aim of this review is to determine whether static stretching reduces hamstring injuries in football codes.
Methods: A systematic literature search was conducted on the online databases PubMed, PEDro, Cochrane, Web of Science, Bisp and Clinical Trial register. Study results were presented descriptively and the quality of the studies assessed were based on Cochraneâs ârisk of biasâ tool.
Results: The review identified 35 studies, including four analysis studies. These studies show deficiencies in the quality of study designs.
Conclusion: The study protocols are varied in terms of the length of intervention and follow-up. No RCT studies are available, however, RCT studies should be conducted in the near future
Recommended from our members
Atmospheric sampling of Supertyphoon Mireille with NASA DC-8 aircraft on September 27,1991, during PEM-West A
The DC-8 mission of September 27, 1991, was designed to sample air flowing into Typhoon Mireille in the boundary layer, air in the upper tropospheric eye region, and air emerging from the typhoon and ahead of the system, also in the upper troposphere. The objective was to find how a typhoon redistributes trace constituents in the West Pacific region and whether any such redistribution is important on the global scale. The boundary layer air (300 m), in a region to the SE of the eye, contained low mixing ratios of the tracer species O3, CO, C2H6, C2H2, C3H8, C6H6and CS2 but high values of dimethylsulfide (DMS). The eye region relative to the boundary layer, showed somewhat elevated levels of CO, substantially increased levels of O3, CS2 and all nonmethane hydrocarbons (NMHCs), and somewhat reduced levels of DMS. Ahead of the eye, CO and the NMHCs remained unchanged, O3 and CS2 showed a modest decrease, and DMS showed a substantial decrease. There was no evidence from lidar cross sections of ozone for the downward entrainment of stratospheric air into the eye region; these sections show that low ozone values were measured in the troposphere. The DMS data suggest substantial entrainment of boundary layer air into the system, particularly into the eye wall region. Estimates of the DMS sulphur flux between the boundary layer and the free troposphere, based on computations of velocity potential and divergent winds, gave values of about 69 ÎŒg S mâ2 dâ1 averaged over a 17.5° grid square encompassing the typhoon. A few hours after sampling with the DC-8, Mireille passed over Oki Island, just to the north of Japan, producing surface values of ozone of 5.5 ppbv. These O3 levels are consistent with the low tropospheric values found by lidar and are more typical of equatorial regions. We suggest that the central eye region may act like a Taylor column which has moved poleward from low latitudes. The high-altitude photochemical environment within Typhoon Mireille was found to be quite active as evidenced by significant levels of measured gas phase H2O2 and CH3OOH and model-computed levels of OH
- âŠ