83 research outputs found

    Fermion Mass Hierarchies and Small Mixing Angles from Extra Dimensions

    Get PDF
    In this paper we study renormalization-group evolutions of Yukawa matrices enhanced by Kaluza-Klein excited modes and analyze their infrared fixed-point structure. We derive necessary conditions to obtain hierarchies between generations on the fixed point. These conditions restrict how the fields in the models can extend to higher dimension. Several specific mechanisms to realize the conditions are presented. We also take account of generation mixing effects and find a scenario where the mixing angles become small at low energy even with large initial values at high-energy scale. A toy model is shown to lead realistic quark mass matrices.Comment: 23 pages, 7 figures, LaTeX, a supplementary explanation and references adde

    Infrared alignment of SUSY flavor structures

    Get PDF
    The various experimental bounds on flavor-changing interactions severely restrict the low-energy flavor structures of soft supersymmetry breaking parameters. In this work, we show that with a particular assumption of Yukawa couplings, the fermion mass and sfermion soft mass matrices are simultaneously diagonalized by common mixing matrices and we then obtain an alignment solution for the flavor problems. The required condition is generated by renormalization group evolutions and achieved at low-energy scale independently of high-energy structures of couplings. In this case, the diagonal entries of the soft scalar mass matrices are determined by gaugino and Higgs soft masses. We also discuss possible realizations of this scenario and the characteristic sparticle spectrum in the models.Comment: 18 pages, 1 figur

    Sfermion masses in Nelson-Strassler type of models: SUSY standard models coupled with SCFTs

    Get PDF
    We study soft SUSY breaking parameters in the Nelson-Strassler type of models: SUSY standard models coupled with SCFTs. In this type of models, soft SUSY breaking parameters including sfermion masses can be suppressed around the decoupling scale of SCFTs. We clarify the condition to derive exponential suppression of sfermion masses within the framework of pure SCFTs. Such behavior is favorable for degeneracy of sfermion masses. However, the realistic sfermion masses are not quite degenerate due to the gauge couplings and the gaugino masses in the SM sector. We show the sfermion mass spectrum obtained in such models. The aspect of suppression for the soft SUSY breaking parameters is also demonstrated in an explicit model. We also give a mechanism generating the μ\mu-term of the Electro-Weak scale by a singlet field coupled with the SCFT.Comment: 28 pages, 8 figures, LaTeX file; corrected typos and references adde

    New non compact Calabi-Yau metrics in D=6

    Get PDF
    A method for constructing explicit Calabi-Yau metrics in six dimensions in terms of an initial hyperkahler structure is presented. The equations to solve are non linear in general, but become linear when the objects describing the metric depend on only one complex coordinate of the hyperkahler 4-dimensional space and its complex conjugated. This situation in particular gives a dual description of D6-branes wrapping a complex 1-cycle inside the hyperkahler space, which was studied by Fayyazuddin. The present work generalize the construction given by him. But the explicit solutions we present correspond to the non linear problem. This is a non linear equation with respect to two variables which, with the help of some specific anzatz, is reduced to a non linear equation with a single variable solvable in terms of elliptic functions. In these terms we construct an infinite family of non compact Calabi-Yau metrics.Comment: A numerical error has been corrected together with the corresponding analysis of the metri

    Optical Alignment of the Chromospheric Lyman-Alpha SpectroPolarimeter using Sophisticated Methods to Minimize Activities under Vacuum

    Get PDF
    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The in- strument main scientific goal is to achieve polarization measurement of the Lyman-alpha line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. For this purpose, the optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly- pro les. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-alpha is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We will explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We will then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015

    A Statistical Inference Method for Interpreting the CLASP Observations

    Full text link
    On 3rd September 2015, the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) successfully measured the linear polarization produced by scattering processes in the hydrogen Lyman-α\alpha line of the solar disk radiation, revealing conspicuous spatial variations in the Q/IQ/I and U/IU/I signals. Via the Hanle effect the line-center Q/IQ/I and U/IU/I amplitudes encode information on the magnetic field of the chromosphere-corona transition region (TR), but they are also sensitive to the three-dimensional structure of this corrugated interface region. With the help of a simple line formation model, here we propose a statistical inference method for interpreting the Lyman-α\alpha line-center polarization observed by CLASP.Comment: Accepted for publication in The Astrophysical Journa

    CLASP Constraints on the Magnetization and Geometrical Complexity of the Chromosphere-Corona Transition Region

    Full text link
    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a suborbital rocket experiment that on 3rd September 2015 measured the linear polarization produced by scattering processes in the hydrogen Ly-α\alpha line of the solar disk radiation, whose line-center photons stem from the chromosphere-corona transition region (TR). These unprecedented spectropolarimetric observations revealed an interesting surprise, namely that there is practically no center-to-limb variation (CLV) in the Q/IQ/I line-center signals. Using an analytical model, we first show that the geometrical complexity of the corrugated surface that delineates the TR has a crucial impact on the CLV of the Q/IQ/I and U/IU/I line-center signals. Secondly, we introduce a statistical description of the solar atmosphere based on a three-dimensional (3D) model derived from a state-of-the-art radiation magneto-hydrodynamic simulation. Each realization of the statistical ensemble is a 3D model characterized by a given degree of magnetization and corrugation of the TR, and for each such realization we solve the full 3D radiative transfer problem taking into account the impact of the CLASP instrument degradation on the calculated polarization signals. Finally, we apply the statistical inference method presented in a previous paper to show that the TR of the 3D model that produces the best agreement with the CLASP observations has a relatively weak magnetic field and a relatively high degree of corrugation. We emphasize that a suitable way to validate or refute numerical models of the upper solar chromosphere is by confronting calculations and observations of the scattering polarization in ultraviolet lines sensitive to the Hanle effect.Comment: Accepted for publication in The Astrophysical Journal Letter

    Softening the Supersymmetric Flavor Problem in Orbifold GUTs

    Get PDF
    The infra-red attractive force of the bulk gauge interactions is applied to soften the supersymmetric flavor problem in the orbifold SU(5) GUT of Kawamura. Then this force aligns in the infra-red regime the soft supersymmetry breaking terms out of their anarchical disorder at a fundamental scale, in such a way that flavor-changing neutral currents as well as dangerous CP-violating phases are suppressed at low energies. It is found that this dynamical alignment is sufficiently good compared with the current experimental bounds, as long as the diagonalization matrices of the Yukawa couplings are CKM-like.Comment: 15 pages,4 figure
    corecore