CLASP

Chromospheric Lyman-Alpha Spectro-Polarimeter

Ryouhei Kano

(National Astronomical Observatory of Japan)

R. Ishikawa, N. Narukage, T. Bando, Y. Katsukawa, M. Kubo, S. Ishikawa (NAOJ), K. Kobayashi (NASA/MSFC), J. Trujillo Bueno (IAC), F. Auchère (IAS), with the CLASP team

Active Chromosphere

Quiet Photosphere

We would like to have magnetic-field measurements in low- β plasma.

Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

A sounding rocket experiment aiming the followings:

- high-precision (0.1%) measurements of linear polarizations in vacuum-UV (VUV) lights,
- the <u>first measurement</u> of the linear polarization induced by atomic polarization and Hanle effect in the Lyman-alpha line (121.567nm), and
- the <u>first exploration</u> of magnetic fields in the upper chromosphere and transition region of the Sun.

The CLASP project was accepted by NASA in 2012, and CLASP will fly with NASA's sounding rocket in 2015!

International Collaboration in CLASP 12 institutes in 5 countries

- Brightest line in VUV chromospheric emission lines.
- Bright even in quiet Sun as well as active regions.
- Line core is emitted by the plasma located between higher chromosphere and transition region.
- Good sensitivity to magnetic field of 10 250 G via Hanle effect.
 - → Lyα line is a best candidate to infer magnetic fields in low-β plasma (β<1) over the entire solar disk.

2014/08/03

COSPAR in Moscow

Origin of linear polarization in scattered lights

Step 1: Population imbalance between atomic sublevels induced by **anisotropic radiation** illuminating atom.

isotropic radiation

Origin of linear polarization in scattered lights

Step2: Quantum coherency by rotation of quantization axes.

Step3: Magnetic fields dephase and decrease the coherence (Hanle effect).

CLASP Instrument: Optics

Narukage, N. et al. (2014, Applied Optics, in preparation)

Cassegrain Telescope		Spectro-Polarimeter	
Aperture	φ270.0 mm	Optics	Dual beam of
Effective	2614 mm (F/9.68)		
Focal Length		vvavelength	$121.567 \pm 0.61 \text{ nm}$
Visible light	"Cold Mirror" coating on	Slit	1.45" (width), 400" (length)
rejection	primary mirror	Grating	Spherical constant-line-spacing,
		J	3000 lines/mm
Slitjaw Optics		CCD camera	512 × 512 pixel 13µm/pixel
Wavelength	121.567 nm (narrowband filter)	Plate scale	0.0048 nm/pixel 1.11"/pixel
Plate scale	1.03"/pixel	Resolution	0.01nm 3"

^{YAR} Sensitivity

0.1%

FoV

527" × 527"

Polarization Measurement

• CLASP is optimized for linear polarization, because V/I is expected to be too small (~0.005% @10G in the Ly-alpha by Zeeman effect).

COSPAR in Moscow

Dual-beam demodulation

• It will reduce spurious polarizations from time variations.

Time variation of intensity of targets

- The modulation/demodulation scheme removes a sensitivity to the linear change.
- The 1.2s period to take one set for the demodulation (i.e. 4 exposures) may be short enough.

 Δ : exposure interval (~0.3s)

Error budget for spurious polarization

Ishikawa, R., et al. (2014, Solar Physics, in press)

Cause of error		error (1σ)
lom se	Photon noise at Ly-a center (10" along slit and 200s obs. period)	0.026%
and noi	Readout noise of CCD cameras	0.011%
R	Fluctuation of exposure durations	5x10 ⁻⁵ %
dI dt	Time variation of source intensity	<0.018%† (~0%)
	Intensity variation from pointing jitter	<0.018%† (~0%)
	Image shift from waveplate rotation	~0%
Tel.	Off-axis incidence with 200"	~10 ⁻⁴ %
	Non-uniformity of coating on primary	10 ⁻³ %
SP	Error in polarization calibration	0.017%
RSS		<0.042% (~0.033%)

+: These values are the case for the single channel demodulation, and can be reduced by dual₄channel modulations. COSPAR in Moscow 12

Flight instrument is in fabrication.

Primary

Secondary

Telescope Structure

Slitjaw optics: mirror unit & filter unit

HWP motor (PMU) & driver

Off-axis Camera mirror

Spectro-Polarimeter Structure

Measurements of flight components are also in progress.

Half waveplate

Reflective pol. analyzer

How ambiguous is **B**-inversion? How to solve the ambiguity? Ishikawa, R. et al. (2014, ApJ 787, 159)

Procedure to infer magnetic fields

What will CLASP observe?

Draft for Coordinated Observation

IRIS

- during the CLASP flight
 - Raster scan of 30"(scan)x175"(slit)
 - Near the limb: μ~0.4 and 0.6
 (Scat-pol is maximum at μ~0.4.)
 - Mg II h&k observation.

Hinode/SOT

- before/after the CLASP flight
 - Near the limb: μ ~0.4.
 - Hα imaging & Photospheric
 Vector magnetic fields by SP.

2014/08/03

Summary

- The CLASP project is on-going to infer magnetic fields in upper-chromosphere and transition region.
- The CLASP, a sounding rocket experiment, will be performed in 2015 summer at White Sands in USA.
- Coordinated imaging observations of chromosphere and photospheric magnetic fields are necessary.
- A quick inversion based on plane-parallel atmospheres will be tried at first, but will be followed by precise analysis collaborated with 3D simulations.