177 research outputs found

    Optimisation of Bioluminescent Reporters for Use with Mycobacteria

    Get PDF
    BACKGROUND: Mycobacterium tuberculosis, the causative agent of tuberculosis, still represents a major public health threat in many countries. Bioluminescence, the production of light by luciferase-catalyzed reactions, is a versatile reporter technology with multiple applications both in vitro and in vivo. In vivo bioluminescence imaging (BLI) represents one of its most outstanding uses by allowing the non-invasive localization of luciferase-expressing cells within a live animal. Despite the extensive use of luminescent reporters in mycobacteria, the resultant luminescent strains have not been fully applied to BLI. METHODOLOGY/PRINCIPAL FINDINGS: One of the main obstacles to the use of bioluminescence for in vivo imaging is the achievement of reporter protein expression levels high enough to obtain a signal that can be detected externally. Therefore, as a first step in the application of this technology to the study of mycobacterial infection in vivo, we have optimised the use of firefly, Gaussia and bacterial luciferases in mycobacteria using a combination of vectors, promoters, and codon-optimised genes. We report for the first time the functional expression of the whole bacterial lux operon in Mycobacterium tuberculosis and M. smegmatis thus allowing the development of auto-luminescent mycobacteria. We demonstrate that the Gaussia luciferase is secreted from bacterial cells and that this secretion does not require a signal sequence. Finally we prove that the signal produced by recombinant mycobacteria expressing either the firefly or bacterial luciferases can be non-invasively detected in the lungs of infected mice by bioluminescence imaging. CONCLUSIONS/SIGNIFICANCE: While much work remains to be done, the finding that both firefly and bacterial luciferases can be detected non-invasively in live mice is an important first step to using these reporters to study the pathogenesis of M. tuberculosis and other mycobacterial species in vivo. Furthermore, the development of auto-luminescent mycobacteria has enormous ramifications for high throughput mycobacterial drug screening assays which are currently carried out either in a destructive manner using LuxAB or the firefly luciferase

    Spatially and genetically distinct African trypanosome virulence variants defined by host interferon-g response

    Get PDF
    We describe 2 spatially distinct foci of human African trypansomiasis in eastern Uganda. The Tororo and Soroti foci of <i>Trypanosoma brucei rhodesiense</i> infection were genetically distinct as characterized by 6 microsatellite and 1 minisatellite polymorphic markers and were characterized by differences in disease progression and host-immune response. In particular, infections with the Tororo genotype exhibited an increased frequency of progression to and severity of the meningoencephalitic stage and higher plasma interferon (IFN)–γ concentration, compared with those with the Soroti genotype. We propose that the magnitude of the systemic IFN-γ response determines the time at which infected individuals develop central nervous system infection and that this is consistent with the recently described role of IFN-γ in facilitating blood-brain barrier transmigration of trypanosomes in an experimental model of infection. The identification of trypanosome isolates with differing disease progression phenotypes provides the first field-based genetic evidence for virulence variants in T. <i>brucei rhodesiense</i>

    A proteasome inhibitor produced by Burkholderia pseudomallei modulates intracellular growth.

    Get PDF
    : The NRPS/PKS cluster encodes the enzymes necessary for glidobactin synthesis it is partially conserved in various members of the Burkholderia genus including B. pseudomallei. In this study we have shown that the insertional inactivation or deletion of glbC in this cluster in B. pseudomallei could reduce the ability of the bacterium to survive or grow in murine macrophages or in human neutrophils. Exogenously added proteasome inhibitors were able to chemically complement the mutation. The insertional inactivation or deletion of glbC increased virulence in an acute model of infection in Balb/c or C57BL/6 mice but virulence in a chronic model of infection was similar to that of the wild type. Our findings contrast with the previous finding that inactivation of the glb gene cluster in B. pseudomallei strain 1026b resulted in marked attenuation, and provides evidence of differential roles for some genes in virulence of different strains of B. pseudomallei.<br/

    The condition-dependent transcriptional landscape of Burkholderia pseudomallei

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Burkholderia pseudomallei (Bp), the causative agent of the often-deadly infectious disease melioidosis, contains one of the largest prokaryotic genomes sequenced to date, at 7.2 Mb with two large circular chromosomes (1 and 2). To comprehensively delineate the Bp transcriptome, we integrated whole-genome tiling array expression data of Bp exposed to >80 diverse physical, chemical, and biological conditions. Our results provide direct experimental support for the strand-specific expression of 5,467 Sanger protein-coding genes, 1,041 operons, and 766 non-coding RNAs. A large proportion of these transcripts displayed condition-dependent expression, consistent with them playing functional roles. The two Bp chromosomes exhibited dramatically different transcriptional landscapes--Chr 1 genes were highly and constitutively expressed, while Chr 2 genes exhibited mosaic expression where distinct subsets were expressed in a strongly condition-dependent manner. We identified dozens of cis-regulatory motifs associated with specific condition-dependent expression programs, and used the condition compendium to elucidate key biological processes associated with two complex pathogen phenotypes--quorum sensing and in vivo infection. Our results demonstrate the utility of a Bp condition-compendium as a community resource for biological discovery. Moreover, the observation that significant portions of the Bp virulence machinery can be activated by specific in vitro cues provides insights into Bp's capacity as an "accidental pathogen", where genetic pathways used by the bacterium to survive in environmental niches may have also facilitated its ability to colonize human hosts.This work was funded by a core grant provided by the Agency for Science, Technology and Research to the Genome Institute of Singapore, and funding from the Defence Medical and Environmental Research Institute, Singapore. This work was supported in part through NIAID contract HHSN266200400035C to BWS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    CD28/B7-Mediated Co-stimulation Is Critical for Early Control of Murine Cytomegalovirus Infection

    Full text link
    Abstract Control of acute murine cytomegalovirus (MCMV) infection is dependent upon both innate and adaptive immune responses, relying primarily upon natural killer (NK) and T-cell responses for control. Although CD28/B7 plays a clear role in T-cell responses in many antigen systems including some viral infections, the importance of co-stimulation during MCMV infection is unconfirmed. In addition, recent data suggest that CD28/B7 co-stimulation might also be important to Ly49H+ NK-cell expansion. We therefore hypothesized that CD28/B7 co-stimulation is critical to viral control after MCMV infection, and further that CD28/B7 co-stimulation plays a role in MCMV-specific T- and NK-cell responses. To test these hypotheses, we utilized C57BL/6 mice lacking the co-stimulatory molecules B7-1 and B7-2 or CD28. After primary infection with MCMV, viral titers are significantly elevated in mice lacking CD28 or B7 compared with wild-type mice. Impaired viral control is associated with significant defects in peripheral T-cell responses to MCMV, which appear to be dependent upon CD28/B7 co-stimulation. Abnormal hepatic T-cell responses in CD28/ mice are preceded by impaired MCMV-specific Ly49H+ NK-cell responses. Cytokine evaluations confirm that CD28/B7 co-stimulation is not required for non-specific antiviral responses. We conclude that CD28-mediated co-stimulation is critical for early viral control during acute MCMV infection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78134/1/vim.2008.0080.pd

    Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection.

    Get PDF
    Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses

    The DSM diagnostic criteria for female orgasmic disorder

    Get PDF
    This is the post-print version of the article. The official published version can be found at the link below.This article reviews the DSM diagnostic criteria for Female Orgasmic Disorder (FOD). Following an overview of the concept of female orgasm, research on the prevalence and associated features of FOD is briefly reviewed. Specific aspects of the DSM-IV-TR criteria for FOD are critically reviewed and key issues that should be considered for DSM-V are discussed. The DSM-IV-TR text on FOD focused on the physiological changes that may (or may not) accompany orgasm in women; one of the major recommendations here is that greater emphasis be given to the subjective aspects of the experience of orgasm. Additional specific recommendations are made for revision of diagnostic criteria, including the use of minimum severity and duration criteria, and better acknowledgment of the crucial role of relationship factors in FOD

    Interferon Gamma Activated Macrophages Kill Mycobacteria by Nitric Oxide Induced Apoptosis

    Get PDF
    Mycobacterium tuberculosis is an intracellular pathogen of macrophages and escapes the macrophages' bactericidal effectors by interfering with phagosome-lysosome fusion. IFN-γ activation renders the macrophages capable of killing intracellular mycobacteria by overcoming the phagosome maturation block, nutrient deprivation and exposure to microbicidal effectors including nitric oxide (NO). While the importance about NO for the control of mycobacterial infection in murine macrophages is well documented, the underlying mechanism has not been revealed yet. In this study we show that IFN-γ induced apoptosis in mycobacteria-infected macrophages, which was strictly dependent on NO. Subsequently, NO-mediated apoptosis resulted in the killing of intracellular mycobacteria independent of autophagy. In fact, killing of mycobacteria was susceptible to the autophagy inhibitor 3-methyladenine (3-MA). However, 3-MA also suppressed NO production, which is an important off-target effect to be considered in autophagy studies using 3-MA. Inhibition of caspase 3/7 activation, as well as NO production, abolished apoptosis and elimination of mycobacteria by IFN-γ activated macrophages. In line with the finding that drug-induced apoptosis kills intracellular mycobacteria in the absence of NO, we identified NO-mediated apoptosis as a new defense mechanism of activated macrophages against M. tuberculosis
    corecore