361 research outputs found
Effect of vessel wettability on the foamability of "ideal" surfactants and "real-world" beer heads
The ability to tailor the foaming properties of a solution by controlling its chemical composition is highly desirable and has been the subject of extensive research driven by a range of applications. However, the control of foams by varying the wettability of the foaming vessel has been less widely reported. This work investigates the effect of the wettability of the side walls of vessels used for the in situ generation of foam by shaking aqueous solutions of three different types of model surfactant systems (non-ionic, anionic and cationic surfactants) along with four different beers (Guinness Original, Banksās Bitter, Bass No 1 and Harvest Pale). We found that hydrophilic vials increased the foamability only for the three model systems but increased foam stability for all foams except the model cationic system. We then compared stability of beer foams produced by shaking and pouring and demonstrated weak qualitative agreement between both foam methods. We also showed how wettability of the glass controls bubble nucleation for beers and champagne and used this effect to control exactly where bubbles form using simple wettability patterns
Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer
Production of aromatic monoterpene molecules in hop flowers is affected by genetic, environmental, and processing factors. Here, the authors engineer brewerās yeast for the production of linalool and geraniol, and show pilot-scale beer produced by engineered strains reconstitutes some qualities of hop flavor
Behavioral Modernity and the Cultural Transmission of Structured Information: The Semantic Axelrod Model
Cultural transmission models are coming to the fore in explaining increases
in the Paleolithic toolkit richness and diversity. During the later
Paleolithic, technologies increase not only in terms of diversity but also in
their complexity and interdependence. As Mesoudi and O'Brien (2008) have shown,
selection broadly favors social learning of information that is hierarchical
and structured, and multiple studies have demonstrated that teaching within a
social learning environment can increase fitness. We believe that teaching also
provides the scaffolding for transmission of more complex cultural traits.
Here, we introduce an extension of the Axelrod (1997} model of cultural
differentiation in which traits have prerequisite relationships, and where
social learning is dependent upon the ordering of those prerequisites. We
examine the resulting structure of cultural repertoires as learning
environments range from largely unstructured imitation, to structured teaching
of necessary prerequisites, and we find that in combination with individual
learning and innovation, high probabilities of teaching prerequisites leads to
richer cultural repertoires. Our results point to ways in which we can build
more comprehensive explanations of the archaeological record of the Paleolithic
as well as other cases of technological change.Comment: 24 pages, 7 figures. Submitted to "Learning Strategies and Cultural
Evolution during the Paleolithic", edited by Kenichi Aoki and Alex Mesoudi,
and presented at the 79th Annual Meeting of the Society for American
Archaeology, Austin TX. Revised 5/14/1
Rethinking use-wear analysis and experimentation as applied to the study of past hominin tool use
In prehistoric human populations, technologies played a fundamental role in the acquisition of different resources and are represented in the main daily living activities, such as with bone, wooden, and stone-tipped spears for hunting, and chipped-stone tools for butchering.
Considering that paleoanthropologists and archeologists are focused on the study of different processes involved in the evolution of human behavior, investigating how hominins acted in the past through the study of evidence on archeological artifacts is crucial. Thus, investigat ing tool use is of major importance for a comprehensive understanding of all processes that characterize human choices of raw materials, techniques, and tool types. Many functional assumptions of tool use have been based on tool design and morphology according to archeologistsā interpretations and ethnographic observations. Such assumptions are used as
baselines when inferring human behavior and have driven an improvement in the methods and techniques employed in functional studies over the past few decades. Here, while arguing that use-wear analysis is a key discipline to assess past hominin tool use and to interpret the organization and variability of artifact types in the archeological record, we aim to review and discuss the current state-of-the-art methods, protocols, and their limitations. In doing so, our discussion focuses on three main topics: (1) the need for fundamental
improvements by adopting established methods and techniques from similar research fields, (2) the need to implement and combine different levels of experimentation, and (3) the crucial need to establish standards and protocols in order to improve data quality, standard ization, repeatability, and reproducibility. By adopting this perspective, we believe that studies will increase the reliability and applicability of use-wear methods on tool function.
The need for a holistic approach that combines not only use-wear traces but also tool technology, design, curation, durability, and efficiency is also debated and revised. Such a revision is a crucial step if archeologists want to build major inferences on human decision making behavior and biocultural evolution processes.info:eu-repo/semantics/publishedVersio
Banana as adjunct in beer production: applicability and performance of fermentative parameters
Traditionally, the raw materials for beer production are barley, hops, water, and yeast, but most brewers use also different adjuncts. During the alcoholic fermentation, the contribution of aroma compounds from other ingredients to the final beer flavor depends on the wort composition, on the yeast strain, and mainly on the process conditions. In this context, banana can also be a raw material favorable to alcoholic fermentation being rich in carbohydrates and minerals and providing low acidity. In this work, the objective was to evaluate the performance of wort adjusted with banana juice in different concentrations. For this, static fermentations were conducted at 15 Ā°C at pilot scale (140 L of medium). The addition of banana that changed the concentration of all-malt wort from 10 Ā°P to 12 and 15 Ā°P were evaluated (Ā°P is the weight of the extract or the sugar equivalent in 100 g solution, at 20 Ā°C). The results showed an increase in ethanol production, with approximately 0.4 g/g ethanol yield and 0.6 g/L h volumetric productivity after 84 h of processing when concentrated wort was used. Thus, it was concluded that banana can be used as an adjunct in brewing methods, helping in the development of new products as well as in obtaining concentrated worts.FundaĆ§Ć£o para a CiĆŖncia e a Tecnologia (FCT)EMATER-MGJohnson-DiverseyFapesp (FundaĆ§Ć£o de Amparo Ć
Pesquisa do Estado de SĆ£o Paulo/Brasil)Wallerstein Industrial & CommercialNovozymesCAPES (CoordenaĆ§Ć£o para AperfeiƧoamento do Ensino Superior/
Brasil)Malteria do ValeGRICES (Gabinete de RelaƧƵes Internacionais da CiĆŖncia e do Ensino Superior/Portugal
Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa
There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit
Effect of Activated Carbon Amendment on Bacterial Community Structure and Functions in a PAH Impacted Urban Soil
ABSTRACT: We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2 % powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GACamended soil. PAH availability assessments in batch tests showed th
Characterization and mitigation of gene expression burden in mammalian cells
Despite recent advances in circuit engineering, the design of genetic networks in mammalian cells is still painstakingly slow and fraught with inexplicable failures. Here, we demonstrate that transiently expressed genes in mammalian cells compete for limited transcriptional and translational resources. This competition results in the coupling of otherwise independent exogenous and endogenous genes, creating a divergence between intended and actual function. Guided by a resource-aware mathematical model, we identify and engineer natural and synthetic miRNA-based incoherent feedforward loop (iFFL) circuits that mitigate gene expression burden. The implementation of these circuits features the use of endogenous miRNAs as elementary components of the engineered iFFL device, a versatile hybrid design that allows burden mitigation to be achieved across different cell-lines with minimal resource requirements. This study establishes the foundations for context-aware prediction and improvement of in vivo synthetic circuit performance, paving the way towards more rational synthetic construct design in mammalian cells
A Heart-Hand Syndrome Gene: Tfap2b Plays a Critical Role in the Development and Remodeling of Mouse Ductus Arteriosus and Limb Patterning
BACKGROUND: Patent ductus arteriosus (PDA) is one of the most common forms of congenital heart disease. Mutations in transcription factor TFAP2B cause Char syndrome, a human disorder characterized by PDA, facial dysmorphysm and hand anomalies. Animal research data are needed to understand the mechanisms. The aim of our study was to elucidate the pathogenesis of Char syndrome at the molecular level. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression of Tfap2b during mouse development was studied, and newborns of Tfap2b-deficient mice were examined to identify phenotypes. Gel shift assays had been carried out to search for Tfap2 downstream genes. Promoters of candidate genes were cloned into a reporter construct and used to demonstrate their regulation by Tfap2b in cell transfection. In situ hybridizations showed that the murine transcription factor Tfap2b was expressed during the entire development of mouse ductus arteriosus. Histological examination of ductus arteriosus from Tfap2b knockout mice 6 hours after birth revealed that they were not closed. Consequently, the lungs of Tfap2b(-/-) mice demonstrated progressive congestion of the pulmonary capillaries, which was postulated to result secondarily from PDA. In addition, Tfap2b was expressed in the limb buds, particularly in the posterior limb field during development. Lack of Tfap2b resulted in bilateral postaxial accessory digits. Further study indicated that expressions of bone morphogenetic protein (Bmp) genes, which are reported to be involved in the limb patterning and ductal development, were altered in limb buds of Tfap2b-deficient embryos, due to direct control of Bmp2 and Bmp4 promoter activity by Tfap2b. CONCLUSIONS/SIGNIFICANCE: Tfap2b plays important roles in the development of mouse ductus arteriosus and limb patterning. Loss of Tfap2b results in altered Bmp expression that may cause the heart-limb defects observed in Tfap2b mouse mutants and Char syndrome patients. The Tfap2b knockout mouse may add to the very limited available animal models of PDA
New herbal bitter liqueur with high antioxidant activity and lower sugar content: innovative approach to liqueurs formulations
Herbal liqueurs are spirits with numerous functional properties, due to the presence of bioactive extractable compounds deriving from herbs. The aim of this study was to obtain new herbal bitter liqueur (HBL) on the basis of twelve selected bitter and aromatic plants extracts, with an optimal sensory profile for consumer acceptance. Also, the determination of optimal sugar content in HBL was done. Furthermore, antioxidant (AO) capacity and total phenolic content (TPC) of HBL was evaluated and compared to similar commercial herbal spirits. Among five tested formulations, assessed by 9-point hedonic scale, HBL with the ratio of bitter and aromatic plants 1:4 was the most acceptable. Ideal concentration of sugar in HBL, determined using a just-about-right scale, was found to be 80.32 g/l of sucrose, which is approximately 20% less than the minimum stipulated by European Union Regulation and several times lower than in the majority of commercial liqueurs. Obtained result indicates the possibility of sugar reduction in liqueurs, and suggests the need to carry out sensory analysis before production of these high-calorie beverages. Radical scavenging ability against DPPH and ABTS radicals, as well as ferric reducing antioxidant power and TPC of HBL were convincingly superior in comparison to similar commercial herbal alcoholic beverages. High correlation coefficients between TPC and other assays applied strongly support the significant role of the polyphenols in the total AO capacity of the HBL and other tested commercial herbal spirits. Headspace GC/MS revealed that the most abundant terpenes were menthone (3.75%), eucalyptol (3.42%) and menthol (3.10%), whereas methanol was present in a small amount (4.97 mg/l)
- ā¦