665 research outputs found

    Evolution of field spiral galaxies up to redshifts z=1

    Full text link
    We have gained VLT/FORS spectra and HST/ACS images of a sample of 220 distant field spiral galaxies. Spatially resolved rotation curves were extracted and fitted with synthetic velocity fields that take into account all geometric and observational effects, like blurring due to the slit width and seeing influence. The maximum rotation velocity Vmax could be determined for 124 galaxies that cover the redshift range 0.1<z<1.0. The luminosity-rotation velocity distribution of this sample is offset from the Tully-Fisher relation (TFR) of local low-mass spirals, whereas the distant high-mass spirals are compatible with the local TFR. We show that the slope of the local and the intermediate-z TFR would be in compliance if its scatter decreased by more than a factor of 3 between z~0.5 and z~0. On the other hand, the distant low-luminosity disks have much lower stellar M/L ratios than their local counterparts, while high-luminosity disks barely evolved in M/L over the covered redshift range. This could be the manifestation of the "downsizing" effect, i.e. the succesive shift of the peak of star formation from high-mass to low-mass galaxies towards lower redshifts. This trend might be canceled out in the TF diagram due to the simultaneous evolution of multiple parameters. We also estimate the ratios between stellar and total masses, finding that these remained constant since z=1, as would be expected in the context of hierarchically growing structure. (Abridged)Comment: 20 pages, 5 figures, ApJ, accepte

    Star formation rates and chemical abundances of emission line galaxies in intermediate-redshift clusters

    Full text link
    We examine the evolutionary status of luminous, star-forming galaxies in intermediate-redshift clusters by considering their star formation rates and the chemical and ionsiation properties of their interstellar emitting gas. Our sample consists of 17 massive, star-forming, mostly disk galaxies with M_{B}<-20, in clusters with redshifts in the range 0.31< z <0.59, with a median of =0.42. We compare these galaxies with the identically selected and analysed intermediate-redshift field sample of Mouhcine et al. (2006), and with local galaxies from the Nearby Field Galaxy Survey of Jansen et al. (2000). From our optical spectra we measure the equivalent widths of OII, Hbeta and OIII emission lines to determine diagnostic line ratios, oxygen abundances, and extinction-corrected star formation rates. The star-forming galaxies in intermediate-redshift clusters display emission line equivalent widths which are, on average, significantly smaller than measured for field galaxies at comparable redshifts. However, a contrasting fraction of our cluster galaxies have equivalent widths similar to the highest observed in the field. This tentatively suggests a bimodality in the star-formation rates per unit luminosity for galaxies in distant clusters. We find no evidence for further bimodalities, or differences between our cluster and field samples, when examining additional diagnostics and the oxygen abundances of our galaxies. This maybe because no such differences exist, perhaps because the cluster galaxies which still display signs of star-formation have recently arrived from the field. In order to examine this topic with more certainty, and to further investigate the way in which any disparity varies as a function of cluster properties, larger spectroscopic samples are needed.Comment: 10 pages, 6 figures, MNRAS in pres

    The Tully-Fisher relation of intermediate redshift field and cluster galaxies from Subaru spectroscopy

    Full text link
    We have carried out spectroscopic observations in 4 cluster fields using Subaru's FOCAS multi-slit spectrograph and obtained spectra for 103 bright disk field and cluster galaxies at 0.06≤z≤1.200.06 \le z \le 1.20. Seventy-seven of these show emission lines, and 33 provide reasonably-secure determinations of the galaxies' rotation velocity. The rotation velocities, luminosities, colours and emission-line properties of these galaxies are used to study the possible effects of the cluster environment on the star-formation history of the galaxies. Comparing the Tully-Fisher relations of cluster and field galaxies at similar reshifts we find no measurable difference in rest-frame BB-band luminosity at a given rotation velocity (the formal difference is 0.18±0.330.18\pm0.33 mag). The colours of the cluster emission line galaxies are only marginally redder in rest-frame B−VB-V (by 0.06±0.040.06\pm0.04 mag) than the field galaxies in our sample. Taken at face value, these results seem to indicate that bright star-forming cluster spirals are similar to their field counterparts in their star-formation properties. However, we find that the fraction of disk galaxies with absorption-line spectra (i.e., with no current star formation) is larger in clusters than in the field by a factor of ∼3\sim3--5. This suggests that the cluster environment has the overall effect of switching off star formation in (at least) some spiral galaxies. To interpret these observational results, we carry out simulations of the possible effects of the cluster environment on the star-formation history of disk galaxies and thus their photometric and spectroscopic properties. Finally, we evaluate the evolution of the rest-frame absolute BB-band magnitude per unit redshift at fixed rotation velocity.Comment: 21 pages, 13 figures, accepted for publication in MNRA

    Translational challenges and opportunities in biofilm science:a BRIEF for the future

    Get PDF
    Biofilms are increasingly recognised as a critical global issue in a multitude of industries impacting health, food and water security, marine sector, and industrial processes resulting in estimated economic cost of $5 trillion USD annually. A major barrier to the translation of biofilm science is the gap between industrial practices and academic research across the biofilms field. Therefore, there is an urgent need for biofilm research to notice and react to industrially relevant issues to achieve transferable outputs. Regulatory frameworks necessarily bridge gaps between different players, but require a clear, science-driven non-biased underpinning to successfully translate research. Here we introduce a 2-dimensional framework, termed the Biofilm Research-Industrial Engagement Framework (BRIEF) for classifying existing biofilm technologies according to their level of scientific insight, including the understanding of the underlying biofilm system, and their industrial utility accounting for current industrial practices. We evidence the BRIEF with three case studies of biofilm science across healthcare, food & agriculture, and wastewater sectors highlighting the multifaceted issues around the effective translation of biofilm research. Based on these studies, we introduce some advisory guidelines to enhance the translational impact of future research

    Galaxy Zoo Supernovae

    Get PDF
    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof of concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period April-July 2010, during which nearly 14,000 supernova candidates from PTF were classified by more than 2,500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners, and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners, and identified as transients 93% of the ~130 spectroscopically confirmed SNe that PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise SN detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with > 8{\sigma} detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events, and via the training and improvement of existing machine classifier algorithms.Comment: 13 pages, 10 figures, accepted MNRA

    Galaxy And Mass Assembly (GAMA)

    Get PDF
    The GAMA survey aims to deliver 250,000 optical spectra (3--7Ang resolution) over 250 sq. degrees to spectroscopic limits of r_{AB} <19.8 and K_{AB}<17.0 mag. Complementary imaging will be provided by GALEX, VST, UKIRT, VISTA, HERSCHEL and ASKAP to comparable flux levels leading to a definitive multi-wavelength galaxy database. The data will be used to study all aspects of cosmic structures on 1kpc to 1Mpc scales spanning all environments and out to a redshift limit of z ~ 0.4. Key science drivers include the measurement of: the halo mass function via group velocity dispersions; the stellar, HI, and baryonic mass functions; galaxy component mass-size relations; the recent merger and star-formation rates by mass, types and environment. Detailed modeling of the spectra, broad SEDs, and spatial distributions should provide individual star formation histories, ages, bulge-disc decompositions and stellar bulge, stellar disc, dust disc, neutral HI gas and total dynamical masses for a significant subset of the sample (~100k) spanning both the giant and dwarf galaxy populations. The survey commenced March 2008 with 50k spectra obtained in 21 clear nights using the Anglo Australian Observatory's new multi-fibre-fed bench-mounted dual-beam spectroscopic system (AAOmega).Comment: Invited talk at IAU 254 (The Galaxy Disk in Cosmological Context, Copenhagen), 6 pages, 5 figures, high quality PDF version available at http://www.eso.org/~jliske/gama

    GAMA: towards a physical understanding of galaxy formation

    Full text link
    The Galaxy And Mass Assembly (GAMA) project is the latest in a tradition of large galaxy redshift surveys, and is now underway on the 3.9m Anglo-Australian Telescope at Siding Spring Observatory. GAMA is designed to map extragalactic structures on scales of 1kpc - 1Mpc in complete detail to a redshift of z~0.2, and to trace the distribution of luminous galaxies out to z~0.5. The principal science aim is to test the standard hierarchical structure formation paradigm of Cold Dark Matter (CDM) on scales of galaxy groups, pairs, discs, bulges and bars. We will measure (1) the Dark Matter Halo Mass Function (as inferred from galaxy group velocity dispersions); (2) baryonic processes, such as star formation and galaxy formation efficiency (as derived from Galaxy Stellar Mass Functions); and (3) the evolution of galaxy merger rates (via galaxy close pairs and galaxy asymmetries). Additionally, GAMA will form the central part of a new galaxy database, which aims to contain 275,000 galaxies with multi-wavelength coverage from coordinated observations with the latest international ground- and space-based facilities: GALEX, VST, VISTA, WISE, HERSCHEL, GMRT and ASKAP. Together, these data will provide increased depth (over 2 magnitudes), doubled spatial resolution (0.7"), and significantly extended wavelength coverage (UV through Far-IR to radio) over the main SDSS spectroscopic survey for five regions, each of around 50 deg^2. This database will permit detailed investigations of the structural, chemical, and dynamical properties of all galaxy types, across all environments, and over a 5 billion year timeline.Comment: GAMA overview which appeared in the October 2009 issue of Astronomy & Geophysics, ref: Astron.Geophys. 50 (2009) 5.1

    The evolution of the brightest cluster galaxies since z∼ 1 from the ESO Distant Cluster Survey (EDisCS)

    Get PDF
    We present K-band data for the brightest cluster galaxies (BCGs) from the ESO Distant Cluster Survey (EDisCS). These data are combined with the photometry published by Aragón-Salamanca, Baugh & Kauffmann and a low-redshift comparison sample built from the BCG catalogue of von der Linden et al. BCG luminosities are measured inside a metric circular aperture with 37 kpc diameter. In agreement with previous studies, we find that the K-band Hubble diagram for BCGs exhibits very low scatter (∼0.35) over a redshift range of 0 2 and evolved passively thereafter. In contrast with some previous studies, we do not detect any significant change in the stellar mass of the BCG since z∼ 1. These results do not seem to depend on the velocity dispersion of the parent cluster. We also find that there is a correlation between the 1D velocity dispersion of the clusters (σcl) and the K-band luminosity of the BCGs (after correcting for passive-evolution). The clusters with large velocity dispersions, and therefore masses, tend to have brighter BCGs, i.e. BCGs with larger stellar masses. This dependency, although significant, is relatively weak: the stellar mass of the BCGs changes only by ∼70 per cent over a two order of magnitude range in cluster mass. Furthermore, this dependency does not change significantly with redshift. We have compared our observational results with the hierarchical galaxy formation and evolution model predictions of De Lucia & Blaizot. We find that the models predict colours which are in reasonable agreement with the observations because the growth in stellar mass is dominated by the accretion of old stars. However, the stellar mass in the model BCGs grows by a factor of 3-4 since z= 1, a growth rate which seems to be ruled out by the observations. The models predict a dependency between the BCG's stellar mass and the velocity dispersion (mass) of the parent cluster in the same sense as the data, but the dependency is significantly stronger than observed. However, one major difficulty in this comparison is that we have measured magnitudes inside a fixed metric aperture while the models compute total luminositie

    3D pic simulations of collisionless shocks at lunar magnetic anomalies and their role in forming lunar swirls

    Get PDF
    The authors would like to thank the Science and Technology Facilities Council for fundamental physics and computing resources that were provided by funding from STFC’s Scientific Computing Department, and would like to thank the European Research Council (ERC 2010 AdG Grant 267841) and FCT (Portugal) grants SFRH/BD/75558/2010 for support.Investigation of the lunar crustal magnetic anomalies offers a comprehensive long-term data set of observations of small-scale magnetic fields and their interaction with the solar wind. In this paper a review of the observations of lunar mini-magnetospheres is compared quantifiably with theoretical kinetic-scale plasma physics and 3D particle-in-cell simulations. The aim of this paper is to provide a complete picture of all the aspects of the phenomena and to show how the observations from all the different and international missions interrelate. The analysis shows that the simulations are consistent with the formation of miniature (smaller than the ion Larmor orbit) collisionless shocks and miniature magnetospheric cavities, which has not been demonstrated previously. The simulations reproduce the finesse and form of the differential proton patterns that are believed to be responsible for the creation of both the "lunar swirls" and "dark lanes." Using a mature plasma physics code like OSIRIS allows us, for the first time, to make a side-by-side comparison between model and space observations. This is shown for all of the key plasma parameters observed to date by spacecraft, including the spectral imaging data of the lunar swirls. The analysis of miniature magnetic structures offers insight into multi-scale mechanisms and kinetic-scale aspects of planetary magnetospheres.Publisher PDFPeer reviewe

    A Survey of Galaxy Kinematics to z ~ 1 in the TKRS/GOODS-N Field. I. Rotation and Dispersion Properties

    Full text link
    We present kinematic measurements of a large sample of galaxies from the TKRS Survey in the GOODS-N field. We measure line-of-sight velocity dispersions from integrated emission for 1089 galaxies with median z=0.637, and spatially resolved kinematics for a subsample of 380 galaxies. This is the largest sample of galaxies to z ~ 1 with kinematics to date, and allows us to measure kinematic properties without morphological pre-selection. Emission linewidths provide kinematics for the bulk of blue galaxies. To fit the spatially resolved kinematics, we fit models with both line-of-sight rotation amplitude and velocity dispersion. Integrated linewidth correlates well with a combination of the rotation gradient and dispersion, and is a robust measure of galaxy kinematics. The spatial extents of emission and continuum are similar and there is no evidence that linewidths are affected by nuclear or clumpy emission. The measured rotation gradient depends strongly on slit PA alignment with galaxy major axis, but integrated linewidth does not. Even for galaxies with well-aligned slits, some have kinematics dominated by dispersion (V/sigma<1) rather than rotation. These are probably objects with disordered velocity fields, not dynamically hot stellar systems. About 35% of the resolved sample are dispersion dominated; galaxies that are both dispersion dominated and bright exist at high redshift but appear rare at low redshift. This kinematic morphology is linked to photometric morphology in HST/ACS images: dispersion dominated galaxies include a higher fraction of irregulars and chain galaxies, while rotation dominated galaxies are mostly disks and irregulars. Only one-third of chain/hyphen galaxies are dominated by rotation; high-z elongated objects cannot be assumed to be inclined disks. (Abridged)Comment: ApJ in press. 23 pages, 23 figures. Full data tables available from http://www.astro.umd.edu/~bjw/tkrs_kinematics
    • …
    corecore