We examine the evolutionary status of luminous, star-forming galaxies in
intermediate-redshift clusters by considering their star formation rates and
the chemical and ionsiation properties of their interstellar emitting gas. Our
sample consists of 17 massive, star-forming, mostly disk galaxies with
M_{B}<-20, in clusters with redshifts in the range 0.31< z <0.59, with a median
of =0.42. We compare these galaxies with the identically selected and
analysed intermediate-redshift field sample of Mouhcine et al. (2006), and with
local galaxies from the Nearby Field Galaxy Survey of Jansen et al. (2000).
From our optical spectra we measure the equivalent widths of OII, Hbeta and
OIII emission lines to determine diagnostic line ratios, oxygen abundances, and
extinction-corrected star formation rates. The star-forming galaxies in
intermediate-redshift clusters display emission line equivalent widths which
are, on average, significantly smaller than measured for field galaxies at
comparable redshifts. However, a contrasting fraction of our cluster galaxies
have equivalent widths similar to the highest observed in the field. This
tentatively suggests a bimodality in the star-formation rates per unit
luminosity for galaxies in distant clusters. We find no evidence for further
bimodalities, or differences between our cluster and field samples, when
examining additional diagnostics and the oxygen abundances of our galaxies.
This maybe because no such differences exist, perhaps because the cluster
galaxies which still display signs of star-formation have recently arrived from
the field. In order to examine this topic with more certainty, and to further
investigate the way in which any disparity varies as a function of cluster
properties, larger spectroscopic samples are needed.Comment: 10 pages, 6 figures, MNRAS in pres