research

Evolution of field spiral galaxies up to redshifts z=1

Abstract

We have gained VLT/FORS spectra and HST/ACS images of a sample of 220 distant field spiral galaxies. Spatially resolved rotation curves were extracted and fitted with synthetic velocity fields that take into account all geometric and observational effects, like blurring due to the slit width and seeing influence. The maximum rotation velocity Vmax could be determined for 124 galaxies that cover the redshift range 0.1<z<1.0. The luminosity-rotation velocity distribution of this sample is offset from the Tully-Fisher relation (TFR) of local low-mass spirals, whereas the distant high-mass spirals are compatible with the local TFR. We show that the slope of the local and the intermediate-z TFR would be in compliance if its scatter decreased by more than a factor of 3 between z~0.5 and z~0. On the other hand, the distant low-luminosity disks have much lower stellar M/L ratios than their local counterparts, while high-luminosity disks barely evolved in M/L over the covered redshift range. This could be the manifestation of the "downsizing" effect, i.e. the succesive shift of the peak of star formation from high-mass to low-mass galaxies towards lower redshifts. This trend might be canceled out in the TF diagram due to the simultaneous evolution of multiple parameters. We also estimate the ratios between stellar and total masses, finding that these remained constant since z=1, as would be expected in the context of hierarchically growing structure. (Abridged)Comment: 20 pages, 5 figures, ApJ, accepte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/03/2019