222 research outputs found

    Climate change means we will have to radically rethink how we use our landscapes

    Get PDF
    British landscapes are likely to change profoundly in the coming decades as global temperatures rise. Heiko Balzter explains why the country needs a coherent landscape strategy for adapting to the new climatic conditions and reducing our climate footprint

    Detection of Amazon Forest Degradation Caused by Land Use Changes

    Get PDF
    Field and satellite optical methods for estimation of chlorophyll content were applied in three study sites of the Ecuadorian Amazon rainforest. Those sites represent a wide range of land use disturbance in secondary and pristine lowland rainforest. The first field method is based on transmittance from the SPAD-502 chlorophyll meter index, the second field method is based on reflectance measurements collected by a spectroradiometer, and the third method estimates chlorophyll content from the PROSPECT radiative transfer model. For the first method, seven models that account for a wide range of vegetation species showed similar average leaf chlorophyll contents until 80 units of SPAD-502. An average of the results of these models was computed and used as ground truth from where a generalized second-order polynomial model was created. For the second method, five chlorophyll indices based on reflectance measurements provided similar chlorophyll content estimations for all SPAD range (15–95 units). The third method estimates chlorophyll content based on the inversion process of the PROSPECT model. The satellite methods estimate vegetation indices sensitive to chlorophyll content from space. All methods have shown to be an alternative approach to detect forest degradation at local and regional levels caused by forest disturbances and land use changes

    Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data

    Get PDF
    Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE) analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v) is provided. The results show that the temporal scales of the current climate (1960–2014) are different from the long-term average (1850–1960). For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the statistical properties of climate time-series data that can go undetected using traditional method

    Post-fire vegetation phenology in Siberian burn scars

    Get PDF
    Softwarefirma startext entwickelt Lösung zur Unterstützung der Bergungsarbeiten. "..... In einem ersten Schritt wird der Inhalt der Bergungskisten erfasst und deren Lagerort verzeichnet. Anschließend werden die einzelnen Inhalte, sogenannte Einheiten, detailliert beschrieben und zusätzlich durch ein Digitalfoto belegt. Für diese Arbeitsschritte hat startext gemeinsam mit den verantwortlichen Archivaren aus Köln innerhalb von nur zwei Wochen ein webbasiertes Softwareprogramm konzipiert und en..

    Multi-annual carbon fluxes from a lowland agricultural peatland

    Get PDF
    Lowland peatland in East Anglia has been drained and used as highly productive Grade 1 agricultural land since the 17th century. Drainage of this large carbon (C) store that has accrued over thousands of years results in land surface subsidence and peat wastage. Prolonged exposure of C dense peat soils to oxygen through on-going agricultural management results in sustained emissions of carbon dioxide (COâ‚‚) to the atmosphere. A nationally increasing population and the economic importance of horticultural produce, combined with international commitments to reducing C emissions, requires a better understanding of this system in order to maintain food production and mitigate emissions of CO. Three full years of eddy covariance COâ‚‚ flux measurements were made over leek, lettuce and celery crops. The site functioned as a net source of COâ‚‚ in all years. Fluxes and their variability are discussed with relevance to meteorological conditions and agricultural management practices

    Validation of Envisat MERIS algorithms for chlorophyll retrieval in a large, turbid and optically-complex shallow lake

    Get PDF
    The 10-year archive of MEdium Resolution Imaging Spectrometer (MERIS) data is an invaluable resource for studies on lake system dynamics at regional and global scales. MERIS data are no longer actively acquired but their capacity for global scale monitoring of lakes from satellites will soon be re-established through the forthcoming Sentinel-3 Ocean and Land Colour Instrument (OLCI). The development and validation of in-water algorithms for the accurate retrieval of biogeochemical parameters is thus of key importance if the potential of MERIS and OLCI data is to be fully exploited for lake monitoring. This study presents the first extensive validation of algorithms for chlorophyll-a (chl-a) retrieval by MERIS in the highly turbid and productive waters of Lake Balaton, Hungary. Six algorithms for chl-a retrieval from MERIS over optically complex Case 2 waters, including band-difference and neural network architectures, were compared using the MERIS archive for 2007-2012. The algorithms were locally-tuned and validated using in situ chl-a data (n = 289) spanning the five year processed image time series and from all four lake basins. In general, both band-difference algorithms tested (Fluorescence Line Height (FLH) and Maximum Chlorophyll Index (MCI)) performed well, whereas the neural network processors were generally found to much less accurately retrieve in situ chl-a concentrations. The Level 1b FLH algorithm performed best overall in terms of chl-a retrieval (R2 = 0.87; RMSE = 4.19 mg m- 3; relative RMSE = 30.75%) and particularly at chl-a concentrations of ≥ 10 mg m- 3 (R2 = 0.85; RMSE = 4.81 mg m- 3; relative RMSE = 20.77%). However, under mesotrophic conditions (i.e., chl-a < 10 mg m- 3) FLH was outperformed by the locally-tuned FUB/WeW processor (relative FLH RMSE < 10 mg m- 3 = 57.57% versus relative FUB/WeW RMSE < 10 mg m- 3 = 46.96%). An ensemble selection of in-water algorithms is demonstrated to improve chl-a retrievals

    Tiger habitat quality modelling in Malaysia with Sentinel-2 and InVEST

    Get PDF
    Deforestation is a threat to habitat quality and biodiversity. In intact forests, even small levels of deforestation can have profound consequences for vertebrate biodiversity. The risk hotspots are Borneo, the Central Amazon, and the Congo Basin. Earth observation (EO) now provides regular, high-resolution satellite images from the Copernicus Sentinel missions and other platforms. To assess the impact of forest conversion and forest loss on biodiversity and habitat quality, forest loss in a tiger conservation landscape in Malaysia is analysed using Sentinel-2 imagery and the InVEST habitat quality model. Forest losses are identified from satellites using the random forest classification and validated with PlanetScope imagery at 3–5 m resolution for a test area. Two scenarios are simulated using InVEST, one with and one without the forest loss maps. The outputs of the InVEST model are maps of tiger habitat quality and habitat degradation in northeast Peninsular Malaysia. In addition to forest loss, OpenStreetMap road vectors and the GLC2000 land-cover map are used to model habitat sensitivity to threats from roads, railways, water bodies, and urban areas. The landscape biodiversity score simulation results fall sharply from ~0.8 to ~0.2 for tree-covered land cover when forest loss is included in the habitat quality model. InVEST makes a reasonable assumption that species richness is higher in pristine tropical forests than in agricultural landscapes. The landscape biodiversity score is used to compare habitat quality between administrative areas. The coupled EO/InVEST modelling framework presented here can support decision makers in reaching the targets of the Kunming-Montreal Global Biodiversity Framework. Forest loss information is essential for the quantification of habitat quality and biodiversity in tropical forests. Next generation ecosystem service models should be co-developed alongside EO products to ensure interoperability
    • …
    corecore