230 research outputs found

    Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy.

    No full text
    We used stimulated emission depletion (STED) superresolution microscopy to analyze the nanoscale organization of 12 glial and axonal proteins at the nodes of Ranvier of teased sciatic nerve fibers. Cytoskeletal proteins of the axon (betaIV spectrin, ankyrin G) exhibit a high degree of one-dimensional longitudinal order at nodal gaps. In contrast, axonal and glial nodal adhesion molecules [neurofascin-186, neuron glial-related cell adhesion molecule (NrCAM)] can arrange in a more complex, 2D hexagonal-like lattice but still feature a ∼190-nm periodicity. Such a lattice-like organization is also found for glial actin. Sodium and potassium channels exhibit a one-dimensional periodicity, with the Nav channels appearing to have a lower degree of organization. At paranodes, both axonal proteins (betaII spectrin, Caspr) and glial proteins (neurofascin-155, ankyrin B) form periodic quasi–one-dimensional arrangements, with a high degree of interdependence between the position of the axonal and the glial proteins. The results indicate the presence of mechanisms that finely align the cytoskeleton of the axon with the one of the Schwann cells, both at paranodal junctions (with myelin loops) and at nodal gaps (with microvilli). Taken together, our observations reveal the importance of the lateral organization of proteins at the nodes of Ranvier and pave the way for deeper investigations of the molecular ultrastructural mechanisms involved in action potential propagation, the formation of the nodes, axon–glia interactions, and demyelination diseases

    HyBIS: Windows Guest Protection through Advanced Memory Introspection

    Full text link
    Effectively protecting the Windows OS is a challenging task, since most implementation details are not publicly known. Windows has always been the main target of malwares that have exploited numerous bugs and vulnerabilities. Recent trusted boot and additional integrity checks have rendered the Windows OS less vulnerable to kernel-level rootkits. Nevertheless, guest Windows Virtual Machines are becoming an increasingly interesting attack target. In this work we introduce and analyze a novel Hypervisor-Based Introspection System (HyBIS) we developed for protecting Windows OSes from malware and rootkits. The HyBIS architecture is motivated and detailed, while targeted experimental results show its effectiveness. Comparison with related work highlights main HyBIS advantages such as: effective semantic introspection, support for 64-bit architectures and for latest Windows (8.x and 10), advanced malware disabling capabilities. We believe the research effort reported here will pave the way to further advances in the security of Windows OSes

    Journey to the Center of the Cookie Ecosystem: Unraveling Actors' Roles and Relationships

    Get PDF
    Web pages have been steadily increasing in complexity over time, including code snippets from several distinct origins and organizations. While this may be a known phenomenon, its implications on the panorama of cookie tracking received little attention until now. Our study focuses on filling this gap, through the analysis of crawl results that are both large-scale and fine-grained, encompassing the whole set of events that lead to the creation and sharing of around 138 million cookies from crawling more than 6 million webpages. Our analysis lets us paint a highly detailed picture of the cookie ecosystem, discovering an intricate network of connections between players that reciprocally exchange information and include each other's content in web pages whose owners may not even be aware. We discover that, in most webpages, tracking cookies are set and shared by organizations at the end of complex chains that involve several middlemen. We also study the impact of cookie ghostwriting, i.e., a common practice where an entity creates cookies in the name of another party, or the webpage. We attribute and define a set of roles in the cookie ecosystem, related to cookie creation and sharing. We see that organizations can and do follow different patterns, including behaviors that previous studies could not uncover: for example, many cookie ghostwriters send cookies they create to themselves, which makes them able to perform cross-site tracking even for users that deleted third-party cookies in their browsers. While some organizations concentrate the flow of information on themselves, others behave as dispatchers, allowing other organizations to perform tracking on the pages that include their content

    Needles in a Haystack: Mining Information from Public Dynamic Analysis Sandboxes for Malware Intelligence

    Get PDF
    Malware sandboxes are automated dynamic analysis systems that execute programs in a controlled environment. Within the large volumes of samples submitted every day to these services, some submissions appear to be different from others, and show interesting characteristics. For example, we observed that malware samples involved in famous targeted attacks \u2013 like the Regin APT framework or the recently disclosed malwares from the Equation Group \u2013 were submitted to our sandbox months or even years before they were detected in the wild. In other cases, the malware developers themselves interact with public sandboxes to test their creations or to develop a new evasion technique. We refer to similar cases as malware developments. In this paper, we propose a novel methodology to automatically identify malware development cases from the samples submitted to a malware analysis sandbox. The results of our experiments show that, by combining dynamic and static analysis with features based on the file submission, it is possible to achieve a good accuracy in automatically identifying cases of malware development. Our goal is to raise awareness on this problem and on the importance of looking at these samples from an intelligence and threat prevention point of view

    G-free: Defeating return-oriented programming through gadget-less binaries

    Get PDF
    Despite the numerous prevention and protection mechanisms that have been introduced into modern operating systems, the exploitation of memory corruption vulnerabilities still represents a serious threat to the security of software systems and networks. A recent exploitation technique, called Return-Oriented Programming (ROP), has lately attracted a considerable attention from academia. Past research on the topic has mostly focused on refining the original attack technique, or on proposing partial solutions that target only particular variants of the attack. In this paper, we present G-Free, a compiler-based approach that represents the first practical solution against any possible form of ROP. Our solution is able to eliminate all unaligned free-branch instructions inside a binary executable, and to protect the aligned free-branch instructions to prevent them from being misused by an attacker. We developed a prototype based on our approach, and evaluated it by compiling GNU libc and a number of real-world applications. The results of the experiments show that our solution is able to prevent any form of return-oriented programming. © 2010 ACM

    WeDRAW: using multisensory serious games to explore concepts in primary mathematics

    Get PDF
    WeDRAW aims to mediate learning of primary school mathematical concepts, such as geometry and arithmetic, through the design, development and evaluation of multisensory serious games, using a combination of sensory interactive technologies. Working closely with schools, using participatory design techniques, the WeDRAW system will be embedded into the school curricula, and configurable by teachers. Besides application to typically developing children, a major goal is to examine this multisensory approach with visually impaired and dyslexic children

    W=0 pairing in Hubbard and related models of low-dimensional superconductors

    Full text link
    Lattice Hamiltonians with on-site interaction WW have W=0 solutions, that is, many-body {\em singlet} eigenstates without double occupation. In particular, W=0 pairs give a clue to understand the pairing force in repulsive Hubbard models. These eigenstates are found in systems with high enough symmetry, like the square, hexagonal or triangular lattices. By a general theorem, we propose a systematic way to construct all the W=0 pairs of a given Hamiltonian. We also introduce a canonical transformation to calculate the effective interaction between the particles of such pairs. In geometries appropriate for the CuO2_{2} planes of cuprate superconductors, armchair Carbon nanotubes or Cobalt Oxides planes, the dressed pair becomes a bound state in a physically relevant range of parameters. We also show that W=0 pairs quantize the magnetic flux like superconducting pairs do. The pairing mechanism breaks down in the presence of strong distortions. The W=0 pairs are also the building blocks for the antiferromagnetic ground state of the half-filled Hubbard model at weak coupling. Our analytical results for the 4×44\times 4 Hubbard square lattice, compared to available numerical data, demonstrate that the method, besides providing intuitive grasp on pairing, also has quantitative predictive power. We also consider including phonon effects in this scenario. Preliminary calculations with small clusters indicate that vector phonons hinder pairing while half-breathing modes are synergic with the W=0 pairing mechanism both at weak coupling and in the polaronic regime.Comment: 42 pages, Topical Review to appear in Journal of Physics C: Condensed Matte

    The prognostic role of post-induction FDG-PET in patients with follicular lymphoma: a subset analysis from the FOLL05 trial of the Fondazione Italiana Linfomi (FIL)

    Get PDF
    BACKGROUND: [18F]fluorodeoxyglucose-positron emission tomography (PET) is emerging as a strong diagnostic and prognostic tool in follicular lymphoma (FL) patients. PATIENTS AND METHODS: In a subset analysis of the FOLL05 trial (NCT00774826), we investigated the prognostic role of post-induction PET (PI-PET) scan. Patients were eligible to this study if they had a PI-PET scan carried out within 3 months from the end of induction immunochemotherapy. Progression-free survival (PFS) was the primary study end point. RESULTS: A total of 202 patients were eligible and analysed for this study. The median age was 55 years (range 33-75). Overall, PI-PET was defined as positive in 49 (24%) patients. Conventional response assessment with CT scan was substantially modified by PET: 15% (22/145) of patients considered as having a complete response (CR) after CT were considered as having partial response (PR) after PI-PET and 53% (30/57) patients considered as having a PR after CT were considered as a CR after PI-PET. With a median follow-up of 34 months, the 3-year PFS was 66% and 35%, respectively, for patients with negative and positive PI-PET (P<0.001). At multivariate analysis, PI-PET (hazard ratio 2.57, 95% confidence interval 1.52-4.34, P<0.001) was independent of conventional response, FLIPI and treatment arm. Also, the prognostic role of PI-PET was maintained within each FLIPI risk group. CONCLUSIONS: In FL patients, PI-PET substantially modifies response assessment and is strongly predictive for the risk of progression. PET should be considered in further updates of response criteria

    Prevalensi Labioschisis Di Rsup. Prof. Dr. R. D. Kandou Manado Periode Januari 2011 – Oktober 2012

    Get PDF
    : Cleft lip or labioschisis is an inherited disorder that can occur on the lips to the ceiling. Cleft lip is a disruption in the face of growth since the fourth week of embryonic life. Method: This research in retrospection description research for knowning prevalence cleft lip or labioschisis in surgical department RSUP. Prof. Dr. R. D. Kandou Manado, period of Januari 2011 – October 2012. Output: Prevalence of Labioschisis and Labiopalatochisis on Januari 2011 – October 2012 is 57% and 43%. Presentation for each of kind harelipped are : unilateral labioschisis 47%, bilateral labioschisis 5%, unilateral palatum of labioshisis 28%, and bilateral palatum of labioschisis 12%, submucosa 1%, and cleft palate lips 7%. Presentation according to the place of defect : right 18%, left 57%, bilateral 25%, and status not complete 54%. Presentation according to age for doing operation : 0-4 years 73%, 5-9 years 10%, 10-14 years 7%, and >15 years 10%. Presentation labioschisis according to sex : Man 58%, and women 42%. Presentation labioschisis according to etiology : genetic factor 25%, environment factor 62%, and unknown factor 13%. Presentation of labioschisis that be surgery 93%, and not surgery 7%. Presentation of labioschisis according to complication surgery : bleeding post surgery 1%, secunder infection 4%, dehisensi/establish scar 4%, and not complication 91%. Conclusion: Prevalence labioschisis still decrease in each year, kind of labioschisis that large is unilateral labioschisis and localization defect is often on left edge. Labioschisis is happen more to man. Factor that to cause labioschisis between : genetic factor, environment factor and unknown factor. Labioschisis is often more to surgery 0-4 years old

    Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation.

    Get PDF
    Neural stem cell (NSC) transplantation can influence immune responses and suppress inflammation in the CNS. Metabolites, such as succinate, modulate the phenotype and function of immune cells, but whether and how NSCs are also activated by such immunometabolites to control immunoreactivity and inflammatory responses is unclear. Here, we show that transplanted somatic and directly induced NSCs ameliorate chronic CNS inflammation by reducing succinate levels in the cerebrospinal fluid, thereby decreasing mononuclear phagocyte (MP) infiltration and secondary CNS damage. Inflammatory MPs release succinate, which activates succinate receptor 1 (SUCNR1)/GPR91 on NSCs, leading them to secrete prostaglandin E2 and scavenge extracellular succinate with consequential anti-inflammatory effects. Thus, our work reveals an unexpected role for the succinate-SUCNR1 axis in somatic and directly induced NSCs, which controls the response of stem cells to inflammatory metabolic signals released by type 1 MPs in the chronically inflamed brain
    • …
    corecore