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Abstract—Web pages have been steadily increasing in complex-
ity over time, including code snippets from several distinct origins
and organizations. While this may be a known phenomenon, its
implications on the panorama of cookie tracking received little
attention until now. Our study focuses on filling this gap, through
the analysis of crawl results that are both large-scale and fine-
grained, encompassing the whole set of events that lead to the
creation and sharing of around 138 million cookies from crawling
more than 6 million webpages.

Our analysis lets us paint a highly detailed picture of the
cookie ecosystem, discovering an intricate network of connections
between players that reciprocally exchange information and
include each other’s content in web pages whose owners may
not even be aware. We discover that, in most webpages, tracking
cookies are set and shared by organizations at the end of complex
chains that involve several middlemen. We also study the impact
of cookie ghostwriting, i.e., a common practice where an entity
creates cookies in the name of another party, or the webpage.

We attribute and define a set of roles in the cookie ecosystem,
related to cookie creation and sharing. We see that organizations
can and do follow different patterns, including behaviors that
previous studies could not uncover: for example, many cookie
ghostwriters send cookies they create to themselves, which
makes them able to perform cross-site tracking even for users
that deleted third-party cookies in their browsers. While some
organizations concentrate the flow of information on themselves,
others behave as dispatchers, allowing other organizations to
perform tracking on the pages that include their content.

I. INTRODUCTION

Web user tracking is at the center of the public attention,
both for the key role it plays in the web advertising industry,
related to big scandals such as Cambridge Analytica [1], and
for being the target of recent major legislation efforts [2, 3, 4].

Because of its impact on the users’ privacy, the web
tracking panorama has been extensively studied from different
angles [5, 6]. For instance, researchers have looked at the
technical aspects (such as the problems of cookie sharing and
syncing among web actors [7, 8]), but also at the legislation
impact and compliance [7], and at the information provided
to users and their behavior [9].

Web cookies play a fundamental role in user tracking, but
previous measurements of cookie tracking focus mainly on
two aspects of the problem, i.e., on identifying and measuring
a) which domains are associated to cookies created in the
browser, and b) which domains share cookies with other do-
mains. These studies, however, are based on a very simplified
model of a web page, which fails to capture the complex

and subtle interaction between snippets of code included from
many different organizations. In fact, because of the same-
origin policy, cookies are traditionally associated with the
owner of the webpage (or iframe) they are created in, even
when the actual code responsible to set or share the cookie
belongs to a third-party entity. To make things worse, this
code can be retrieved and executed only at the end of a
long chain of inclusions, which may involve several different
organizations. This has several important consequences. First,
the owner of the website is often unaware of who actually
creates first-party cookies in his own pages and of the complex
“journeys” these cookies go through when they are later read
by and sent to different actors. Second, as a result of this
previously simplified model, cookie sharing was only studied
in the context of third-party cookies – thus capturing only
the tip of the iceberg of the tracking panorama. Finally, by
identifying precisely which piece of code creates the cookies,
we can discover cases of “cookie collisions”, in which two
different actors included in the same website end up creating
cookies with the same name, thus overwriting each other.

Another problem with previous studies is that they consid-
ered cookie sharing as a two-party operation, where a cookie
from a domain A was sent over an HTTP request to a domain
B. However, in reality, the operation involves three actors:
who creates the cookie in the first place (which, as we will
see later in the paper, might not even be aware of the fact
that it is later shared with others), who retrieves it from the
browser and includes it in an HTTP request, and who receives
the cookie at the end of the chain. In this paper we will see
how this finer-grained distinction enables us to discover many
interesting phenomena such as, for example, scripts that share
with their own domains cookies that were created by different
and completely unrelated organizations.

The goal of our study is to look under the hood of a
web page and capture the entire life of a cookie, from its
creation to all the operations into which it is later involved,
and uncover the intricate network of relationships between the
myriad of actors that take part into the cookie ecosystem.
For this purpose, we define the concepts of cookie trees
and creation and sharing chains, which enable us to capture
the dependencies and relations between entities that act as
both end-points and middlemen in the cookie ecosystem. We
also introduce the new concept of cookie ghostwriting, which



relates to cookies that are set for a party (e.g., the website the
user is visiting at the moment), but are actually created by a
different entity (e.g., a script loaded from an advertiser).

We then performed a large-scale measurement study, in
which we collect fine-grained details of 138M cookie creation
events from crawling 6.2M web pages in 1M unique websites.
Rather than simply associating events to domains, we devise
techniques that enable us to map domains to organizations.
Our approach enables us to discover a much larger panorama
of relations between actors in the cookie ecosystem, increasing
the numbers of relations by more than threefold compared to
techniques in the state of the art.

The statistics reported in Section IV show that our approach
uncovers a large number of previously not measured behaviors:
in particular, cookie ghostwriting is an extremely common
practice, showing numbers that are roughly equivalent to those
of third-party cookies. For instance, creating first-party cookie
from an external library would not pose privacy problems per
se, but in out study we found that cookie ghostwriters often
send themselves a copy of the first-party cookies they have
created, making it possible for them to track even users who
only accept first-party cookies (a common feature provided
by web browsers). Additionally, some important actors func-
tion mostly as cookie ghostwriters, hence being essentially
unmeasurable by approaches that only consider third-party
cookies. Furthermore, we verify that very often cookie creation
and sharing involves complex chains of intermediaries, with
several middlemen between the visited website and the entities
creating or receiving cookies.

In our behavioral analysis discussed in Section V, we dive
deeper into the phenomena we observed in our experiments,
providing both a quantitative analysis and a set of empirical
examples of the different behaviors we observed in our mea-
surement. In particular, we present cases of cookie sharing,
cookie collisions, and discuss the risk brought by including
potentially dangerous or malicious cookie actors. Finally, we
analyze and compare the cookie ecosystems we encountered
in different website categories.

We conclude our analysis of results with an investigation,
presented in Section VI, of the network of links between actors
of the cookie ecosystem, showing patterns of behavior that
often could not be observed with previous approaches. By
looking at the fine-grained data collected by our system, we
discuss in details how different companies (such as Google,
Facebook, RapLeaf, and WPP) often play different roles in the
ecosystem. We also emphasize the connections that exist be-
tween companies, showing that some (such as AppNexus) act
like dispatching hubs that connect many different advertisers.

In conclusion, this paper shows that by pinpointing exactly
which piece of code is responsible for the creation and
manipulation of each cookie, and how that code ended up
included in a web page in the first place, it is possible to draw
a much clearer and detailed picture of the cookie ecosystem
and of the sharing behavior performed by tracking companies.
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Fig. 1: Example cookie tree. Green cookies are first-party
cookies created by W, yellow ones are ghosted first-party
cookies, and purple ones are third-party cookies.

II. COOKIE TREES & COOKIE FLOWS

Traditionally, cookies are divided in just two categories: a)
first-party cookies, created for the website’s domain, and b)
third-party cookies, created by (and for) third party domains
that hosted resources requested by the website. This distinction
mimics the perspective of the browsers — but as we will
clarify later, it is insufficient to fully capture the complex
mechanics behind the creation and sharing of cookies among
different actors.

To study this phenomenon more accurately, we propose
an extended version of resource trees [10, 11]. Resource
trees show in a hierarchical way all resources requested by
a given page. Up until now, they have been used to identify
various security problems, such as inherited resource vulnera-
bilities [12], malicious content loads [13], or to discover third-
party dependencies [14]. For instance, a resource tree can be
used to show that a website A loads a JavaScript file from
a domain B, which in turn loads code from C, which finally
includes an image from a domain D (hereinafter we will call
this a chain A → B → C → D).

For our purpose, we merge information about cookie in-
teractions with resource trees, by marking in the tree nodes
that create cookies and by adding special edges to show with
whom these cookies are shared. We call the resulting special-
focus resource tree a cookie tree. For instance, Figure 1 shows
a simple cookie tree, in which the main website W creates its
own cookies (in green in the picture), and three other nodes (d,
g and j) set third-party cookies (in purple). However, the tree
also shows that other nodes are responsible for the creation
of first-party cookies (represented in yellow). For instance,
h provides some JavaScript code that also creates a cookie
as part of the website W. As an analogy, this is similar to a
ghostwriter who writes content that is then published under



the name of a different author. For this reason, to separate
these cookies from those created by W itself, we will refer to
them as ghosted first-party cookies.

This distinction is very important, and constitutes one of the
main contributions of our paper. In fact, all previous studies
considered all first-party cookies to be identical. Instead, our
fine-grained view enables us to clearly understand that first-
party cookies are created by a variety of different actors, and
often the main website is not even aware of their existence. For
instance, if W wants to be compliant with GDPR regulations,
it needs to have full control over all its first-party cookies –
which is very difficult when those cookies are created by other
components that appear deep in the resource tree.

The cookie tree also enables us to emphasize the role
of middlemen (such as c) which are not directly involved
in cookie-related activities, but are responsible for initiating
subsequent requests (such as to g, which in turn sets a third-
party cookie). We refer to internal nodes in the tree (i.e., nodes
that are neither the root nor leaves) as intermediaries.

According to our tree, we define the creation chain of a
cookie as the sequence of nodes connecting the root to the
node that performs a cookie creation, and similarly sharing
chain the sequence leading to nodes that receive a shared
cookie. Moreover, we talk about a cookie flow whenever a
cookie is explicitly sent to an organization. To better under-
stand and characterize the players involved in a cookie flow,
we propose the following four main roles:

• Cookie creators are the entities that set cookies, either
through JavaScript or through an HTTP header. Depend-
ing on the type of the cookie, we further differentiate
creators in the main website page (W in our example),
third parties (d, g and j), and ghost cookie creators (a,
b, e, and h). It is important to stress that in this example
primary and ghost cookies are both treated equally as
first-party cookies by web browsers.

• Intermediaries are internal nodes in the cookie tree that
may not directly create or handle cookies, but include
resources which do that (e.g., a and c are intermediaries
for the cookie set by h).

• Senders retrieve cookies set by other entities and explic-
itly send them over an HTTP request. We can further
break down this role into three categories: own senders
send their own cookies (i.e., those created by the same
node, like a and b), in-chain senders send cookies
created by one of their child nodes (i.e., for which
the sender is part of the creation chain), and off-chain
senders send cookies without being part of their creation
chain (e.g., e, sending the cookie from h to i).

• Receivers are instead the entities that explicitly receive
cookies as part of an HTTP request. We distinguish
own receivers that obtain cookies created by themselves
(a), in-chain receivers that obtain cookies created by
their child nodes (i.e., for which the receiver is part of
the creation chain), and off-chain receivers that obtain
cookies for which they were not part of the creation chain
(f and i).

A cookie flow always includes three roles: the creator of
the cookie, the sender who reads the cookie and includes it
in an HTTP request, and the cookie receiver. In the common
case in which the receiver is the same as the sender, we say
that it is a self receiver.

Example: Flickr
The flickr.com homepage includes a s.js JavaScript file
from siftscience.com (a domain belonging to a company
that provides digital trust services). The script uses a
popular fingerprinting library (fingerprintjs2) to
create a first-party cookie named __ssid. Accord-
ing to our definitions, this is a ghosted cookie, as
it is associated to the flickr.com domain but it is in
fact created by a different entity. Moreover, the same
script from siftscience.com then takes the newly created
cookie and sends it to hexagon-analytics.com (which
provides analytics services for news and trending topics).
In our model, this creates a cookie flow in which
siftscience.com is both the ghost creator and the own
sender, while hexagon-analytics.com is an off-chain re-
ceiver. The same cookie flow involving the exact same
actors appears in several other popular websites, such as
patreon.com and shutterstock.com.

While for simplicity Figure 1 does not represent it, our
analysis also covers ghosted third-party cookies, that are
created or shared by scripts included in the other contexts
(e.g., through an iframe).

The roles described here above are intentionally fine-grained
in order to capture all different forms of activity an actor might
be involved into in the cookie ecosystem. However, the fact
that many organizations own several domains open the door to
misleading attributions. In fact, if for example Google’s Gmail
retrieves cookies created by Google Analytics, this may not
be very interesting from a privacy perspective as both services
belong to the same actor. Therefore, to avoid polluting our
results with these less relevant cases, we decided to aggregate
the nodes that belong to the same organization. For instance,
if a Google-related domain loads resources from a different
Google-related domain, we merge the two in a single Google
node. In section III-B, we provide details about how this
aggregation happens.

III. METHODOLOGY

For our study, we assembled a dataset by using the Tranco
1M most accessed domains list [15]. The list is based on the
combined ranking of four large data providers: Alexa [16],
Cisco Umbrella [17], Majestic [18] and Quantcast [19], thus
improving confidence regarding popularity and stability of
those domains over time.

A. The Analysis Platform

We implemented our cookie analysis framework on top of
a custom crawler which is based on the open-source web
browser Chromium (v75.0.3770.90). We used four servers



based in the US, running GNU/Linux 4.15.0-54. Each server
had 64 cores with Intel Xeon E5-4600v2 series processors. The
experiment was performed in July 2019 and needed 12 days to
complete. The crawler is fed with the aforementioned domains
list, loads the corresponding web pages, and then recursively
accesses three random pages from each domain, up to a
distance of three clicks from the initial main page. This results
in up to 13 different pages per domain, mimicking the con-
figuration used in other privacy-related studies [20]. To avoid
the detection of our automated browser by bot detectors, we
implemented the most recently-proposed methods [21, 22, 23].

Our system collects cookie information by using a custom
instrumentation developed by using the Chrome debugging
protocol (CDP) [24]. By tapping into its network tracing
capabilities, we gather all requests and responses performed
by the browser, including their headers and bodies. From the
Set-Cookie header, we can identify the HTTP requests
that create cookies. To identify cookies created by JavaScript,
we modified the cookie object implementation of the browser
to capture the write operations and trace them back to the
exact scripts performing the actions. As a result, for each
website, we output the complete cookie tree by combining the
stack traces of all the specific resources and requests in the
entire execution context, including asynchronous JavaScript
callbacks, domain/frame redirections, and dynamically embed-
ded scripts (e.g., document.write). We identify sender
nodes by checking the creators of POST and GET requests with
cookie content. Moreover, our framework also tracks cookie
collisions which we define as an event in which a new actor
overwrites a previously existing cookie on the page that was
created by a different actor.

To accurately detect cookie sharing events, we follow the
approaches of the most recent research studies [8, 25] on
this domain, analyzing all the requests performed during the
access, and attempting to decode (e.g., BASE64) and deflate
(e.g., gzip) the content in multiple layers. Because the main
goal of our paper is to study the privacy implications of
cookies existing on web pages, we focus only on identifier
cookies and therefore, construct the cookie tree only for those.
We pre-filter all cookies that are unlikely to be identifiable by
using the zxcvbn technique proposed in a recent work [26].

B. Mapping Domains to Organizations

Here we describe how we map the domains into unique
organizations to attribute the cookie creation or sharing events
to unique actors and to accurately identify the roles we defined
in the previous sections.

We start with pre-processing the domain names that were
involved in cookie related events during our crawling phase.
We first find domains that use CNAME cloaking [27], which
is a technique to escape ad-blockers through CNAME aliases
and disguise third-party trackers first-parties. We then search
those identified domain names in the NextDNS blocklist [28]
to re-attribute them to existing trackers. Finally, we use
tldExtract [29] to obtain the private suffix of each domain,

corresponding to the largest privately-owned suffix of that
domain (e.g., forums.bbc.co.uk becomes bbc.co.uk).

Once the largest privately-owned suffix for each domain
is identified, we adopt two strategies to map the domain
names to organizations; the first is based on three manually-
curated lists (Disconnect [30], WhoTracks.me [31] and
webxray [32]), the other is an automated approach we de-
signed to increase the coverage. As discussed in the following,
we take care of giving higher priority to manually curated lists.

Automatically finding the owner organization of a domain is
a challenging task. The main reason is that the nature of inter-
organization relationships are very dynamic and complex, e.g.,
company merges and acquisitions, or service provider compa-
nies acting on behalf of their customers in the online world.
Things are further complicated by the domain registration
ecosystem that does not aim at providing full transparency on
the organizations behind each domain, as exemplified by the
myriad of companies providing “anonymized” and “privacy
preserving” domain registration services. As a result, such
a mapping can only be inferred by combining and cross-
checking multiple data sources.

The key idea behind our automation is to find connections
among the different nodes of our graph G: domains, IP
addresses and organization names. To model these connec-
tions, we add links to G when we discover information that
associates two different elements. A first source of links is
the log of our crawler: we connect domain names with the
IP addresses they resolved to when they were crawled. Then,
similarly to previous work [33], we furthermore parse Whois
records of domain names, extracting e-mail addresses (whose
domain is a potential endpoint for a link) and organization
names. Finally, we use Internet Routing Registries (IRRs or
IP whois [34]) to apply a similar mapping to IP addresses.

The above procedure has the risk of adding to G links
that do not represent true connections between resources
of the same organization. To minimize this risk, we adopt
a conservative approach that vastly reduces those incorrect
mappings. A first cause of potential mismatches, as discussed
above, are anonymisation services which register domain
names. We observe that these services register more domains
than regular organizations; hence, we take a dataset of all the
domains registered on the Internet [35], manually inspect the
top 500 domain registrants (in terms of number of domains
registered) to identify Whois privacy protection services, and
we remove all nodes and edges associated with them from G.
Another cause of noise are cloud hosting and CDN providers,
which host on the same network several domains by different
companies. Again conservatively, we discard from G all IRR
data from organizations hosting 10 or more different domains.

Additionally, organization names are free-form text fields
with no enforced validation. For instance, a single organization
may appear in the domain Whois and in the IRRs with slightly
different names, thus hindering the connection between the
two. We address this challenge by performing normalization
on the names (e.g., by removing special characters and com-
pany extensions) and by matching them using the normalized



Fig. 2: Pervasiveness of identifiers. Most websites and web-
pages include at least one identifier cookie and almost half of
all cookies created are identifiers. Moreover, these identifiers
are shared among multiple organizations in more than half of
webpages and websites.

Levenshtein distance with a conservative 0.9 threshold. We
merge organization names in G according to this approach.

We obtain our final results by returning the groups of
domain names in the same community as output by the
graph-based label propagation algorithm [36] applied on each
connected component extracted from G. We validated our
approach by using the manually compiled lists as a “ground
truth” reference: we then looked for conflicts, defined as cases
where our automated approach was joining two organizations
that were identified as separate in one of the three manually
curated lists. As a consequence of implementing our auto-
mated approach in a very conservative way to minimize false
positives, out of the 3,913 domains in any of these lists, we
encountered just one single conflict. In this case, a domain
was grouped on the Disconnect list to a company with a
similar name, while our approach associated it to another
company with exactly the same information in the Whois
record. Therefore, we filed a bug report to correct the mistake
in the Disconnect list; they acknowledged and solved it.

We merge the four mappings to obtain a single one, taking
care of solving conflicting domain attributions. We do this
by first assigning a priority level to each mapping, based on
our assessment of each method’s precision: we gave highest
priority to the manually compiled datasets, preferring those
that have been updated most recently, hence resulting in
Disconnect first, WhoTracks.me second, and webxray third.
As a fourth data source, we use our automated approach. We
then proceed according to a label-propagation algorithm that
augments the highest priority mapping with all the others in
descending order of priority, siding towards the results of the
highest-priority mapping in case of conflicts.

IV. THE COOKIE ECOSYSTEM AT A GLANCE

We now discuss our experimental results. In this Section, we
provide some high-level statistics on the cookie ecosystem; in
Section V we go into the details of the cookie-related behavior
we observed from the actors involved, while in Section VI we

TABLE I: Top cookie ghostwriters.

Actor Websites
as ghostwriter as third-party

Google 175,395 283,778
Facebook 141,708 6,472
AddThis 47,250 52,648
Yandex 41,089 3,782
Baidu 19,965 1,348
Quantcast 17,902 3,039
AdRoll 10,702 1
Criteo 10,486 68
CNZZ 10,052 0
Shopify 9,657 137
ShareThis 9,486 17,589
Hotjar 9,431 3
HubSpot 8,935 372
Zopim 8,557 3
Amazon 7,883 23,358
StatCounter 7,631 2
Mail.Ru 6,573 1,914
Adobe 6,379 30,918
Tawk 5,890 11
Microsoft 5,782 19,200

delve into the details of the tangled relationships among the
cookie actors we discovered.

A. Cookie Statistics

As explained in Section III-A, starting from a seed of 1M
domain names, our system explores recursively three random
pages up to a depth of three from the main page, resulting
in a total of 6.2M pages crawled. During this process, we
observed the creation of 137,997,677 cookies, out of which
we classify 48% (66.7M) as identifiers with the zxcvbn
technique described in Section III-A. As many as 76% of
the websites we visited did set at least one cookie. After
manual inspection, we observed that many of the websites that
do not create cookies correspond to either empty/very basic,
broken, or abandoned websites. Notwithstanding regulations
that require consent before tracking users [2, 3, 4], in Figure 2
we show that almost all of the websites that set cookies do
set at least one cookie that is recognized by our system as an
identifier. Results presented in the remainder of this paper are
based on the total of 738,168 websites that set at least one
identifier cookie. From Figure 2, we also see that almost half of
all the cookies that are set are potential identifiers. Moreover,
387,202 (52.45%) sites exhibited at least one cookie sharing
or collision event.

We further determined that, among all identifier cookies,
31.1M (47%) are third-party cookies, 28M are ghosted cook-
ies, and only 7.6M are primary first-party cookies that are
authored by a resource of the website itself. Primary first-
party cookies appear to be globally more prevalent (515K of
websites) than third-party (454K) and ghosted (424K) cookies.
However, websites that include third-party or ghosted cookies
typically include more of these than of primary first-party
cookies. On websites that include third-party (resp. ghosted)
cookies, these cookies are created by an average of 3.52 (resp.
2.2) actors. This suggests that ghosted cookies are used in
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Fig. 3: Number of distinct actors in chains (log scale).

a similar way to third-party ones. However, ghosted cookies
might allow for a more stealthy way of tracking: even privacy-
conscious users who block third-party cookies could still be
tracked through first-party ghosted cookies.

Table I on the preceding page enumerates the top cookie
ghostwriters, ranked by the number of websites in which they
set ghosted cookies. It is interesting to notice that several
organizations mostly or almost exclusively set cookies as
ghostwriters, making them harder to detect with previously
existing approaches. We speculate that the actors listed in the
table want to ensure the tracking can be done even when third-
party tracking is blocked.

Of the 138M cookie creation events, we identified 1.43M
unique cookie names. Of those cookie names, 793,085 (55%)
were associated with an identifier value. Interestingly, for
about half of those cookie names we observed both iden-
tifiable and non-identifiable values. This suggests that the
same name is often used by different websites to store
different types of information. We suspect that this might
also be done on purpose by some parties to hide identi-
fiers. For example, we discovered many cookies with seem-
ingly innocuous names (such as lang) that at times con-
tained identifiable strings like th5bhut9onq8tnsskqm86
or 6057eb8a86fd83fd24956771.

During our crawling, we identified 6.24M unique scripts (by
content) in the trees. Those scripts were imported from 1.87M
unique file names. After excluding scripts that did not per-
form any cookie-related operation, we were left with 365,277
scripts. Examples in this category include sharethis.js,
which is used for social media sharing buttons and plu-
gins in websites [37], ga.js, which is related to the
Google Marketing Platform analytics [38]), and piwik.js,
which corresponds to the JavaScript tracking client from
Matomo [39]. On the other hand, scripts that were not
involved in cookie operations were mostly related to well-
known frameworks and libraries such as jquery.js [40],
bootstrap.min.js [41] and modernizr.js [42].

TABLE II: Inter-actor relationships uncovered with our ap-
proach vs. those observable with previous approaches, i.e.,
solely based on the analysis of sources and destinations of
explicit HTTP cookie syncing.

Distinct elements State-of-the-art Our approach Increase

cookie actors 48,285 171,140 +254%
(a1, a2) relationships 151,257 809,179 +435%
(s, a1, a2) triples 2,025,936 6,490,377 +220%

B. Cookie Tree Statistics

This paper was mainly motivated by the assumption that a
deeper investigation into the cookie creation and sharing events
would enable the identification of considerably more actors
that are part of the cookie ecosystem. This would eventually
provide us with a much more comprehensive and accurate
picture of the whole ecosystem. To validate this assumption
we compare our results with state-of-the-art knowledge on the
number of actors, the total number of (inter-actor) relation-
ships, and the number of relationships per website that could
be identified through existing methods which only consider
explicit HTTP cookie syncing.

Table II shows the number of (s, a1, a2) triples – which
represent a direct relationship (connection) between an orga-
nization a1 and another a2 when visiting a website s. This
relationship happens when a1 is linked to a2 in a cookie tree.
The results reported in the table clearly indicates that our
approach uncovers significantly more organizations (almost
three times more) and relationships (more than four times).
This clearly show the added value of performing a deeper
investigation of the cookie creation and sharing events. In
particular, the analysis of cookie trees enabled us to identify as
many as 170K organizations that are involved in the creation
and sharing of cookies. Figure 3 instead shows the distribution
of the number of actors that are involved in each cookie
chain. The number of intermediaries appears to be higher
than one would imagine: 62% of all unique creation chains
and 86% of all unique sharing chains happen because of at
least one intermediary node which is uncovered thanks to
our methodology. Furthermore, for 43% of the websites that
set identifier cookies we observe that at least three different
organizations are involved. In summary, we can observe and
study a significantly larger number of actors and relationships
between them compared to those that could be obtained
using previous methodologies, discovering a large and intricate
system of relations that have not been analyzed before.

V. ROLES AND BEHAVIORS

Here, we analyze the cookie-related behavior we observed
in our crawl, discussing cookie sharing, collisions, inclusions
of risky domains, and difference between website categories.

A. Cookie Sharing

Cookie sharing is a very common practice, and in our
experiments we observed 8.97M cookie sharing events over
387K websites. Worryingly, 505,926 of these events, found



TABLE III: Breakdown, by roles, of cookie sharing events.

Own sender In-chain sender Off-chain sender
Receiver type Total Organizations Total Organizations Total Organizations

websites Sender Receiver websites Sender Receiver websites Sender Receiver

Own receiver 351,861 26,898 50,301 14,039 3,335 40,470 2,032 12,410
In-chain (other / self) 60,789 2,592 12,073 26,195 / 67,664 2,444 1,830 / 22,803 20,912 1,538 7,382
Off-chain (other / self) 101,600 14,583 3,910 46,921 14,283 2,548 75,578 / 135,040 3,967 3,240 / 4,940

in 43,748 websites, happened without encryption. Even more
worryingly, 37.71% of these cookies that were shared over
HTTP were in fact initially created through HTTPS.

Table III provides global statistics about cookie sharing,
detailing the different sender/receiver roles. The table shows
that the most common phenomenon we observe is own sender
to own receiver: in 352K websites (48% of those that create
identifier cookies), an actor creates a ghosted first-party cookie
and then sends it to himself. This practice is likely used by
companies to sync ghosted first-party cookies with third-party
cookies created when accessing other domains. As a result,
the company can keep on tracking users even after they delete
or refuse third-party cookies. For example, a user may visit
three pages in which a tracking company creates first-party
cookies (e.g., id1, id2 and id3), which are then send back to
the tracker himself. If these IDs are synced with a third-party
cookie (e.g., idGlobal), even if idGlobal is deleted from the
browser, the tracking organization still has the information that
id1, id2 and id3 are the same user.

Example: Online jewelry store
A popular jewelry website offers potential buyers a
customer chat. To do so, it loads an external script
provided by an online support management company.
This script creates a ghosted first-party identifier in the
context of the website, and sends it to its own server to
match the local id with the general user cookie.

Another common behavior (102K websites, 14% those with
identifier cookies) is own sender to off-chain receiver. In this
case, cookie creators share identifiers with actors that do not
appear in the cookie creation trace. This could be due to data
sharing agreements, where the intentional action of the cookie
creators shows that they willingly share their identifiers.

Example: Online gaming store
An online gaming store includes a platform that enables
advertisers to publish videos. The script of this company
creates ghosted first-party identifier in the main page.
Then, this same script send the created identifier to
another company that offer web user tracking services,
with which they probably have a data sharing agreement.

The most suspicious of all roles is off-chain self receiver. In
this case, an organization that is not involved in the creation
of a cookie, retrieves it from the browser and sends it to itself.
We observe this behavior on 135K websites, in a significant

portion of the websites (18%). This could be explained by
the possible off-chain actors that take advantage of scripts
that have access to the same cookie storage to be able to
read cookies created by other creators (first-party or, more
frequently, ghosted ones). This behavior might be consistent
with some sort of “cookie stealing”, but also with consensual
data sharing after a private agreement between actors.

Example: Porn video chat website
A highly accessed porn video chat website includes a
third-party widget to indicate how many users are con-
nected at that moment. This widget adds two additional
scripts to the equation; the first is from a bot detection
company, and the second is from a marketing company.
The marketing company creates an identifier cookie, bot
detection script sends it back to himself along with
other identifier cookies it did not create, maybe in an
attempt to detect suspicious patterns in the cookies. It
does so, however, without any direct interaction with the
marketing domain.

A couple of more roles may raise the reader’s attention,
because they involve types of interaction whose purpose may
not be intuitively obvious. A first one is in-chain self receiver
(67K websites, 9% of those with identifiers), which can happen
because an actor A may include code from another actor B
that will send an identifier back to A.

Example: News website
A news website includes content from an advertise-
ment company (x.com) that includes some recommend-
ed/sponsored “articles” at the bottom of the page. This
company inserts content from a marketing company in
the page (match.y.com), which creates an identifier
cookie. After the cookie is created, this last company in-
cludes a script from the original x.com company, which
sends the cookie to itself, through the match.x.com
domain.

A second case worth clarifying is off-chain sender to own
receiver (40K websites, 5% of those having identifiers), where
an entity not involved in the creation of a cookie sends this
cookie to the creator itself. This may happen because a third
party sends additional data correlated to a user identifier.



TABLE IV: Breakdown by role of dangerous actors included in chains.

Risk Creator Sender Receiver (other / self) Intermediary
Own In-chain Off-chain Own In-chain Off-chain Creation Sharing

5–6: Moderate (caution) 60,381 5,194 4,128 4,395 1,527 / 4,290 1,690 / 2,815 5,466 / 2,958 60,729 23,513
7–8: Moderately high (shady) 31,023 6,232 2,947 5,055 1,370 / 5,062 1,254 / 1,931 3,585 / 3,684 26,155 14,245
9–10: High (malicious) 2,943 726 489 259 132 / 560 158 / 311 436 / 185 3,186 2,425

TABLE V: Cookie collisions.

Second writer Total # creator organizations
websites Original Overwriters

In original creation chain 1,758 377 880
Not in creation original chain 6,664 3,660 478

Example: Online sports store
A sports retailer creates a first-party identifier cookie
with the initial Set-Cookie header. The page also
includes a script from a e-commerce company that
offers behavioral analysis of potential customers; this
script collects data about the users’ visit, and then
sends this information back to the main page (including
the mentioned identifier), to an internal path with the
visit-event name, suggesting that this is used to
link the information back to the user.

B. Cookie Collisions

We detected 184,377 cookie collision events in our analysis.
In 71% of the cases, an identifier value in the cookie was
changed to a different identifier; in the remaining cases, the
identifier was changed to a non-identifier value (e.g., an empty
string) or vice versa. In most cases (90.16%) the cookies
were overwritten by scripts rather than via the Set-Cookie
headers in requests.

Example: Privacy service
A GDPR compliance control company includes a script
that intentionally overwrites cookies for 66 different
actors with an empty string, most likely to avoid cases of
unrequested tracking. However, due to a race condition,
this approach does not always work. In fact, in some
cases the value of the cookies was shared though a HTTP
request before it was successfully deleted.

While not extremely common, cookie collisions are still an
important phenomenon to analyze, due to the potential impact
on the proper functioning of the websites and the associated
services. In Table V, we provide some overall statistics on
the cookie collisions we observed in our dataset. In most
cases, these collisions were caused by actors outside of the
cookie creation chain (observed in 6.67K websites versus
1.76K where the overwriter was in the creation chain). It is
interesting to see that only 478 organizations are responsible
for overwriting cookies of 3,660 other parties. Collisions may
be dangerous for original creators, as a bad overwritten value

could break the logic of some software, and may even create
security problems if such data is not properly sanitized (e.g.,
when processed by a server-side application).

Example: Software bug
A company offers a service to dynamically adapt the
content of a website based on the referrer value (e.g.,
to account for users coming from a search engine vs.
those that clicked on an advertisement banner). This is
implemented by a script that reads all first-party cookies
and caches them, performing an encoding phase while
processing the data. All cookies are then rewritten in
their encoded form, probably due to a bug in the imple-
mentation, thus erroneously overwriting all of them.

Example: Copy-pasted code
A US-based web analytics company open sourced all its
code for transparency reasons. After manual analysis, it
appears that some web analytics companies based in Asia
reused the same code in their product without changing
the name of the created cookies. Since many websites
include code from multiple web analytics providers, all
these companies (the original one and the “copycat”
ones) end up creating colliding cookies. As a result,
likely without realizing it, they are tampering with each
other’s tracking cookies.

C. Risk

We now consider how often risky domains are involved
in the creation or sharing of identifier cookies, as certain
reports have shown that multiple targeted attack campaigns
employ tracking in their reconnaissance phase to identify target
users [43, 44].

To achieve this, we leverage a commercial engine that
associates a risk level between 1 (completely safe) and 10
(certainly malicious) to each domain [45, 46]. In 24% of web-
sites there is at least one actor involved in a creation/sharing
chain with a risk higher than the risk of the website itself.
Worryingly, 9% of websites with domains considered safe (risk
level at most 4) include, in a cookie chain, a dangerous domain
(risk level 5 or higher), and 4% include likely malicious
domains (risk level at least 7).

As shown in Table IV, 60K (8%) websites have at least
one cookie creator that is considered moderately dangerous
(risk level 5 or 6) while suspicious actors create cookies for
31K (4%) websites. Finally, malicious actors set cookies in a
non-negligible set of 2,943 websites. The other roles (cookie



sender, receiver and intermediary) are less common, but still
present at all the risk levels.

Example: Cycling news website
An eastern European cycling news website includes a
script named tooltip.js loaded from a local re-
source, using the src field of the script tag. This
script searches, by id value, for a div element created
by a large Asian online market place which includes
an iframe for its domain. The tooltip.js script
changes the inner HTML of that div, creating a new
iframe pointing to a malicious domain (risk level 10),
which then creates a third-party identifier cookie in
the user’s browser. Since tooltip.js is hosted on
the website’s server, our explanation is that the server
was likely infected due to a vulnerability in the server,
whose software was not properly updated and was
likely affected by a vulnerability (Apache/2.2.15
(CentOS) modi_rpaf/0.6 PHP/5.4.30). This
particular malicious domain has been related to phishing
and ransomware attacks; it is thus possible that we
observed the first stage of an attack that lead to a
malware infection or phishing attempt using the identifier
cookie created here as a trigger (similar to previously
reported attacks [43, 44]). At the time of writing the
victim website did not seem infected anymore.

D. Website Categories

We now consider how actors in the cookie ecosystem vary
among different website categories (using website-to-category
data from a commercial engine [45, 46]). For each category,
we compute a “bag of words” that includes the number of
times links between actors appear in cookie chains. We then
use the generalized Jaccard similarity between these bags of
words to compute the cross-similarity matrix between website
categories. This matrix essentially encodes how similar the
cookie ecosystems of categories are.

We tried to use this similarity matrix to perform clustering
and discover groups of categories that have similar cookie
ecosystems. However, we obtained results showing a single,
large cluster centered on the most important actors (see Sec-
tion VI-A); however, some categories are closer to the center
of this cluster, and some are instead quite dissimilar from all
other categories. Hence, we computed a centrality score, which
is a category’s average similarity with each other category,
and we ranked all categories for which we crawled at least
1,000 websites according to this centrality score. In Table VI
we show the top and bottom categories in this ranking: we
can see that the most central categories are those whose busi-
ness models are heavily reliant on “mainstream” advertising.
Conversely, we explain the different cookie ecosystems in the
bottom categories with different business models: for example,
malware and scam are funded through other means; placehold-
ers websites are essentially unused; charitable organizations
are funded through donations; office/business applications and

TABLE VI: Top and bottom website categories, ranked by
centrality scores representing their similarity against all other
categories (see definition in Section V-D).

Rank Score Website category # websites

1 0.340 Entertainment 36,311
2 0.338 Education 39,864
3 0.336 Reference 15,480
4 0.335 Society/Daily Living 12,184
5 0.333 Art/Culture 3,412

46 0.201 Scam/Questionable/Illegal 1,321
47 0.177 Malicious Sources/Malnets 8,989
48 0.163 Placeholders 6,575
49 0.144 Charitable Organizations 5,049
50 0.135 Office/Business Applications 1,215
51 0.128 Financial Services 19,595
52 0.087 Pornography 18,932

financial services are often paid services that are not based on
advertising. Our results for the pornography category confirm
those of Wondracek et al. [47], who find that this ecosystem is
well separated from that of other web industries, with separate
advertisement and different business models.

VI. ACTORS AND RELATIONSHIPS

In this section, we take a closer look at the cookie ecosystem
to identify the main actors that are responsible for the majority
of cookie creation and sharing events.

A. Top Actors

Table VII on the following page presents the list of top
companies involved in cookie actions. The list is sorted by the
number of websites they appear in and provides information
about how often each company plays one of the roles defined
in Section II. We associate the organizations to their country
through manual investigation based on publicly available data.
Among the top 50 organizations, 39 are based in the US and
only 11 are based in other countries. Due to space constraints,
in Table VII, we include the global top 10 and all other actors
that are not based in the US. It is worth pointing out that
these 50 organizations alone have a majoritarian weight in the
cookie ecosystem, being involved in 58% of the (s, a1, a2)
triples shown in Table II on page 6.

It is interesting to observe how different actors play different
roles in the cookie ecosystem. For instance, while most actors
are, among other roles, cookie creators (either as ghostwriters
or as third parties), others like RapLeaf, Casale and WPP,
rarely create cookies but often act as senders, receivers or in-
termediaries. With a few exceptions (e.g., Baidu and Mail.ru),
most actors frequently behave as intermediaries in both cookie
creation and sharing, suggesting a complex panorama of
connections between actors. This can be due to a variety of
reasons, including ad exchange services that facilitate buying
and selling advertisements from multiple networks, or the
reciprocity patterns discussed in Section VI-B. These indicate



TABLE VII: Top actors, ranked by the number of websites in which they appear; we include the top 10 actors, and actors
outside of the US that are in the overall top 50. We report the percentage of websites in which they adopt each role.

# Actor CC Websites Creator Sender Receiver (from other / self) Intermediary
own in-chain off-chain own in-chain off-chain Creation Sharing

1 Google US 415,545 93% – 2% 14% – / – 2% / 1% 7% / 10% 29% 32%
2 Facebook US 171,699 96% 96% – 20% – / 96% – / – 3% / 20% – 20%
3 AddThis US 62,671 84% 80% – 13% 4% / 80% – / – 14% / 9 1% 4%
4 Yandex RU 49,036 93% 92% 1% 22% 7% / 92% – / – 9% / 22% 2% 92%
5 Adobe US 45,835 71% 27% 2% 34% 2% / 26% 37% / 1% 36% / 33% 61% 81%
6 RapLeaf US 42,698 13% – 1% 75% – / – – / 1% 57% / 73% 10% 68%
7 AppNexus US 39,991 77% 47% 47% 38% – / 44% 9% / 46% 46% / 36% 73% 87%
8 Trade Desk US 39,000 76% 14% 12% 4% 8% / 14% 4% / 11% 51% / 4% 75% 93%
9 Yahoo! US 38,472 48% 20% 19% 55% 9% / 19% 10% / 19% 71% / 53% 25% 62%

10 Quantcast US 36,662 68% 62% – 11% – / 62% – / – 50% / 11% 8% 26%
21 Adform DK 25,627 24% 1% – 26% – / 1% – / – 44% / 23% 15% 87%
30 Baidu CN 22,771 99% 12% 5% 5% 1% / 12% – / 4% – / 5% 1% 11%
32 WPP GB 21,943 – – – 28% – / – – / – 86% / 23% 2% 84%
34 Bidr AU 20,918 81% – 1% 6% 74% / – 63% / – 3% / – 90% 94%
35 Horyzon FR 20,872 89% 1% 11% 9% 1% / – 73% / 11% 20% / 8% 93% 84%
39 Casale CA 19,595 32% 19% – 60% – / – – / – 57% / 45% 16% 43%
41 Eyereturn CA 18,616 90% – – – – / – – / – 17% / – – –
47 Criteo FR 16,308 79% 64% – 14% 14% / 64% – / – 15% / 12% 5% 39%
48 Mail.ru RU 16,120 92% 7% – 36% 2% / 7% – / – 10% / 36% 1% 7%
50 Avocet GB 15,677 51% 3% – 31% – / 3% 9% / – 20% / 31% 50% 86%

that our approach can capture very different modus operandi
among cookie actors, as we elaborate with some examples.

Example: Facebook, AddThis & Yandex
These actors in the majority of cases share their own
cookies with themselves. For example, Facebook cre-
ates ghosted cookies with a script served by the con-
nect.facebook.net domain and then sends them to himself
by including them in the URL of 1x1 pixel GIF image
retrieved from facebook.com. This behavior implies that
whoever receives these cookies (in this case Facebook)
will be able to continue tracking even when the third-
party cookies for facebook.com are deleted. As we
discussed earlier, this is a very common phenomenon
among other actors as well. Interestingly, Google—one
of the main ghostwriters—does not appear to use this
technique, and it does not share its ghosted cookies with
anyone. This means that it will still be able to track
users, but will not able to correlate their visits to different
websites if they do not keep third-party cookies.

Example: Eyereturn & Google
Some actors have a relatively constant behavior. For
instance, Eyeturn creates cookies but does not participate
in other roles in the ecosystem, even if in some cases it
receives identifiers created by other actors (i.e., it is an
off-chain receiver). On the other hand, Google is rarely
a sender or a receiver, but it is quite frequently involved
as an intermediary, due to the Google tag manager.
Through manual analysis, we found that most cases
where Google behaved as a sender were due to website
owners embedding copies of Google code rather than
downloading them from the official URL.

Example: Rapleaf & Casale
Rapleaf is a marketing company that offers various
services, such as identity matching, website visitor iden-
tification, and email intelligence. It has an interesting
behavioral pattern regarding cookies, being a frequent
off-chain cookie sender. Their terms of service [48] help
us understand this situation, stating that they “may share
the Information (including PII) with customers, market-
ing services and platforms, and service providers and
vendors that we retain”, and that they “may share some
or all of the Information with affiliated or subsidiary
companies.”. Indeed, we see that they generally use the
idsync.rlcdn.com domain, whose name suggests that the
off-chain cookie sending we observe may happen be-
tween willing partners who want to sync their identifiers.
We observe a similar pattern with Casale, which is an
online ad exchange company.

Example: WPP
Another interesting case is WPP, a company that offers
multiple services related to advertising, content, media
investment, public relations and public affairs. They are
off-chain receivers from multiple different actors in many
occasions, indicating a large number of deals with other
organizations in order to track web users.

B. Linkage Graph

From the cookie trees we produced, we create a global graph
where the nodes are the organizations and the edges connect
those organizations that are connected through a cookie chain.
The weight of the edges are calculated with the number
of websites in which those organizations are connected by
an edge in one or more cookie trees. The top nodes, and



Fig. 4: Linkage subgraph that includes organization appearing
in at least 30,000 crawled websites. Edge thickness is pro-
portional to weight: faint lines indicate small weights. Edge
direction can be read from curvature (edges follow a clockwise
direction) and color (it is the one of the originating edge).

connections between them, are depicted in Figure 4. The
curvature of edges (they follow a clockwise direction) can be
used to infer their directionality; the single most important
edge (thickness is proportional to weight) is the one that
connects Google to Facebook, which is principally related
to the creation of cookies, as the tag management solution
dynamically includes the code of the social network, that ends
up creating identifiers on the browser.

Figure 4 also shows that AppNexus has many outgoing links
towards other top advertisers, which have roughly the same
weight (see also details on those links in Table VIII). Basically,
we see that AppNexus works as a dispatcher, acting as the
hub that connects to many advertisers. By manually analyzing
the data we collected we observed the same pattern for other
players, such as PubMatic and WPP.

The full linkage graph has 803,410 nodes and 1,874,575
edges; out of all nodes, 171,140 have a non-zero indegree,
meaning that they do play a role as cookie actors, while the
remaining 632,270 nodes are websites that are not included
in any cookie trace of other websites. Figure 5 shows the
degree distribution of the graph, displaying the complementary
CDF, which is suitable to discern to what extent graphs follow
a power-law degree distribution, which would correspond to
a straight line in this plot [49]. We see that the degree
distribution is well approximated by a power law, with a
truncation around a 105 degree. Since most nodes have 0
indegree, the indegree and outdegree distributions differ for
low values. This truncated power-law degree distribution is
typical of scale-free networks, indicating that in this case a
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Fig. 5: Degree distribution in the full linkage graph. The
complementary CDF on the y axis represents the fraction of
nodes having degree of no more than x.

TABLE VIII: The top links, by weight, of the linkage graph.
The SoA column indicates the ratio of links detectable with
previous approaches (see Table II). For simplicity, we do not
include collisions and cookie header-based sharing, as they
affect a minority of these links.

Origin Destination Websites per trace type
All SoA Creation Sharing

Google Facebook 57,261 – 56,886 8,654
AppNexus Trade Desk 22,235 100% 3,037 22,208
Trade Desk Rhythm 21,103 95% 15,643 18,462
PubMatic Drawbridge 21,075 11% 21,068 16,046
Drawbridge PubMatic 20,847 95% 20,841 15,947
Adobe Drawbridge 20,743 75% 20,167 15,296
Drawbridge Adobe 20,671 75% 20,066 15,095
Trade Desk Rubicon 20,520 99% 3,966 20,493
Amazon AppNexus 20,252 – 20,162 2,238
Trade Desk AppNexus 20,079 85% 3,960 20,076
Yahoo! AOL 19,942 9% 5,131 18,654
AppNexus Amazon 19,881 100% 18,836 19,124
AppNexus PubMatic 19,773 98% 15,293 18,861
PubMatic SiteScout 19,604 2% 19,598 409
Drawbridge Trade Desk 19,513 – 19,014 15,868
Trade Desk Drawbridge 19,510 94% 19,015 15,866
Trade Desk PubMatic 19,002 99% 198 17,114
AppNexus Yahoo! 18,879 100% 13 18,879
Google WPP 18,665 – 175 18,508
AppNexus Microsoft 18,630 99% 18,615 18,326

few important actors have disproportionate importance.
The top edges of the linkage graph are shown in Table VIII,

which better captures the specialization of those links: for
example, the link from Google to Facebook is dominated by
traces involving cookie creation, while the one from AppNexus
to TradeDesk is mostly related to cookie sharing. The SoA
column refers to the fraction of websites in which the link
between actors could be observed using state-of-the-art ap-
proaches (see Table II on page 6): we can see that important
links between cookie actors (e.g., Google-Facebook, Amazon-
AppNexus) would have been invisible, or in other cases
grossly underestimated, by using previous approaches based
only on third-party sharing. As one may expect, collisions are
very rare in the interaction between large players.

Another interesting aspect is the reciprocity of some links,



Fig. 6: Subgraph of the per-category linkage graph including
nodes with at least 1% degree and the largest edges between
them. Edge weight and direction can be read according to the
instructions in the caption of Figure 4.

meaning that an edge from A to B is reciprocated with another
edge from B to A having about the same weight, or in other
words that A includes code from B roughly as often as B
includes code from A. For example, in Table VIII, the links
from AppNexus to Amazon and TradeDesk have returning
links of roughly the same weight, and the same can be said
about links from Drawbridge to Trade Desk and PubMatic.
We cannot be sure of the reason behind this phenomenon, but
it is hard to believe that it is just a coincidence. A possible
explanation is that these actors exchange code inclusions to
mutually increase each other’s coverage. Besides observing
these links between big players, we evaluated reciprocity on
the whole linkage network, obtaining a value of 0.41 according
to the r coefficient of Squartini et al. [50], meaning that
41% of the weight in the whole actor linkage subgraph is
reciprocated. This confirms the fact that a reciprocation pattern
hence appears to exist and be noticeable in the whole network.

C. Organizations not in trackerlists

To verify how many of the cookie actors that we observed
were known to the tracking protection community, we used
git commit history to retrieve all the domains that were ever
included in the Disconnect (used by Mozilla Firefox) [51],
AdGuard [52] and EasyList [53] trackerlists, for a total of
41,027 filtered domains. The domains that are most active
in tracking do appear in trackerlists, but we encountered
many small organizations (166,365 in total) involved in the
cookie ecosystem that were not included in any trackerlist.
The number of websites in which these actors appear (average
4.10) is distributed very unevenly, matching once again a
truncated power law similar to the one reported in Figure 5.
45.7K organizations appear in at least two websites, 4.8K in

TABLE IX: Highest degree nodes in the per-category graph.

Category Degree Indegree Outdegree

Web Ads/Analytics 31% 41% 22%
Technology/Internet 12% 12% 12%
Business/Economy 10% 9% 10%
Content Servers 7% 6% 9%
Social Networking 4% 7% 2%
Search Engines/Portals 4% 6% 2%
Shopping 3% 2% 5%
Audio/Video Clips 3% 4% 2%
News/Media 2% 1% 3%
Entertainment 2% 1% 3%
Mixed Content 2% 2% 1%
Suspicious 2% 2% 2%
Uncategorized 2% 1% 2%
Education 1% – 2%
Health 1% – 2%

at least 10, and only four are included in 10K websites or
more. Overall, existing trackerlists have a good coverage of the
most important players (whitelisted or blacklisted), with the
largest uncovered one being zorosrv.com, which appears in
16,000 websites and ranked 49th in the list shown in Table VII.

D. Linkage between website categories

We now discuss the linkage between cookie actor categories.
Cookie actors can and do have domains relevant to multiple
categories (e.g., Google/Alphabet owns the google.com
search engine, the youtube.com video website and the
doubleclick.net advertiser), so we now consider the in-
termediate chains between domains described in Section III-B,
and build a new linkage graph, following the procedure of
Section VI-B, based on these chains. As in Section V-D,
we use again the dataset provided by a commercial en-
gine [45, 46]—this time to associate categories to each domain
in the trace—and collapse this graph by merging nodes of
the same categories, obtaining a linkage graph connecting 85
categories. The linkage between the top categories is displayed
in Figure 6.

The top categories by degree (defined as sum of in- and
out-degree) of the graph are displayed, with their ratio of
the total degree, in Table IX. It is clear that most cookie
traces are concentrated in just a few categories and, perhaps
unsurprisingly, the ads/analytics category is by far the most
important in this graph. Other important categories are technol-
ogy/services, including domains used for Javascript libraries
and web services and business/economy, including businesses
often related to marketing, e.g., the gumgum.com applied
computer vision company.

Further down the list, the mixed content category includes
several providers of user-generated content that may be marked
for parental control. The suspicious and uncategorized cat-
egories include a large number of small actors, which are
described in more details in Section V-C.

It is interesting to consider the mismatch between indegree
and outdegree of nodes: those with a larger indegree, such as
ads/analytics, social networking, and search engines, are the
ones that perform most tracking; on the other hand, categories



such as shopping, news/media and entertainment include more
pages are likely to bring information to trackers when visited.

VII. DISCUSSION

Our study shows that it is common to have complex chains
of intermediaries in web pages, and that cookies are written by,
and shared among, many different actors. The complexity of
interactions that we observed in our experiments have multiple
implications in the current web panorama.

From the point of view of website owners and developers,
the sheer number of actors involved in each page makes
it difficult to guarantee that user privacy is respected. Re-
cent data protection legislations require strict control on user
identifiable information, but due to this intricate structure,
ensuring compliance with current regulations may be very
difficult without advanced methods to check the information
flow. Moreover, we have seen that it is unfortunately not
rare to encounter content from potentially dangerous sources
associated to cookie creation and sharing. On the one hand, we
can envision that enforcement of current and upcoming privacy
jurisprudence will keep limiting the amount of unwanted data
sharing between trackers; on the other hand, we believe that
finer-grained approaches such as ours will help in detecting
actors who try to skirt the rules.

From a preventive point of view, there are various aspects
to take into account. Existing blocking solutions use pre-
calculated lists in order to block tracking, and they successfully
include most of the larger actors of the cookie ecosystem.
However, our study shows that a large number of smaller
players are not present in these lists, and that these actors often
play important roles in creation and sharing chains. Cookie
trees and cookie flows offer a systematic way to better under-
stand each actor, together with its role, in the trackerlists. Basic
cookie analysis may erroneously underestimate or misclassify
many actors, such as those that create ghosted cookies or work
as dispatchers for other players in the ecosystem. By allowing
these tools to identify and stop the tracking process from its
initial stag, our approach will largely improve their efficiency
while avoiding other anti-blocking strategies [54, 55] that can
lead to other privacy violations.

VIII. RELATED WORK

Web tracking has been studied from multiple perspectives.
Krishnamurthy and Wills [56] were among the first to analyze
cookies. Later, Roesner et al. [57] proposed a classification
of web tracking behaviors. Recent research [5, 58] performed
large-scale analyses of the ecosystem, and found that most of
the highly-accessed websites performed tracking.

Web cookies have also been analyzed from different per-
spectives. Sivakorn et al. [59] performed an extensive study on
the privacy threats that users may suffer when an attacker steals
their HTTP cookies. They checked a wide range of highly
accessed services and found that the corresponding problems
are not limited to a specific group of website types. Franken
et al. [6] evaluated the effect of third-party requests and cookie
policies in various browsers and extensions. They used a

framework which automatically checked policy enforcement
using a comprehensive set of test cases, and identified multiple
flaws in existing policy implementations. Sanchez-Rola et al.
[60] presented a timing side-channel attack against server-side
request processing schemes that uses cookies to detect the
specific state of users in third-party websites.

Cookie sharing was analyzed by multiple studies. Acar et al.
[61] were among the first to perform a comprehensive analysis
of the topic. They present a technique to analyze identifier
flows using the strace debugging tool to analyze traffic, and
a set of criteria to distinguish and extract pseudonymous
identifiers. Their measurements show that more than 11%
of the users browser history can be linked this way in the
wild. Ghosh et al. [62] analyzed the concept from a business
perspective, and have shown that when trackers have similar
sizes they will find that cookie sharing is financially beneficial
for all; conversely, when they are not homogeneous, cookie
sharing will increase the revenue of some at the expense of
others. Brookman et al. [9] reviewed a small set of popular
websites to check for types of cookie sharing that facilitate
cross-device tracking. They demonstrated that many of these
websites were sharing extensive data with third-party services,
and that user lack information to understand what is actually
happening, as the privacy policies do not clarify the specific
purpose of sharing. A recent paper by Urban et al. [8] studied
cookie sharing before and after the European General Data
Protection Regulation (GDPR) came into effect. They detected
a statistically significant impact on the number of connections
between third-parties (around 40% less). The most recent
paper in the topic, authored by Papadopoulos et al. [7],
analyzed cookie sharing in a year-long traffic log from 850
real mobile users. They implemented a method to detect these
events in real time, and measured the privacy loss on the user
side. Using this method, they were able to find that 97% of
the web users are sometime exposed to cookie sharing, most
of them within the first week.

In summary, a large corpus of work studied the security
and privacy implications of cookie sharing and web tracking;
however, the set of interdependences between the players in
the cookie ecosystem due to the complexities of modern-day
webpages—the main topic of this research—still remained
largely unexplored. Or main goal has been to fill this gap.

IX. CONCLUSIONS

We took an in-depth analysis of the cookie web tracking
panorama, and we have shown that the intricate mechanics
of interactions between several different authors on the same
web page play a key role. Through a large-scale and fine-
grained crawl, we obtained a large dataset that allowed us
to shine light on large parts of the cookie ecosystem that
previously received little attention. We reveal the existence of
a convoluted network of connections between players, where
each of them follows multiple different roles. For instance,
thanks to our methodology, we are able to detect the presence
of dispatcher organizations that facilitate cross-site tracking.
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