100 research outputs found

    Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones

    Get PDF
    We provide new insights into the geochemistry of serpentinites from mid-ocean ridges (Mid-Atlantic Ridge and Hess Deep), passive margins (Iberia Abyssal Plain and Newfoundland) and fore-arcs (Mariana and Guatemala) based on bulk-rock and in situ mineral major and trace element compositional data collected on drill cores from the Deep Sea Drilling Project and Ocean Drilling Program. These data are important for constraining the serpentinite-hosted trace element inventory of subduction zones. Bulk serpentinites show up to several orders of magnitude enrichments in Cl, B, Sr, U, Sb, Pb, Rb, Cs and Li relative to elements of similar compatibility during mantle melting, which correspond to the highest primitive mantle-normalized B/Nb, B/Th, U/Th, Sb/Ce, Sr/Nd and Li/Y among subducted lithologies of the oceanic lithosphere (serpentinites, sediments and altered igneous oceanic crust). Among the elements showing relative enrichment, Cl and B are by far the most abundant with bulk concentrations mostly above 1000 µg g−1 and 30 µg g−1, respectively. All other trace elements showing relative enrichments are generally present in low concentrations (µg g−1 level), except Sr in carbonate-bearing serpentinites (thousands of µg g−1). In situ data indicate that concentrations of Cl, B, Sr, U, Sb, Rb and Cs are, and that of Li can be, increased by serpentinization. These elements are largely hosted in serpentine (lizardite and chrysotile, but not antigorite). Aragonite precipitation leads to significant enrichments in Sr, U and B, whereas calcite is important only as an Sr host. Commonly observed brucite is trace element-poor. The overall enrichment patterns are comparable among serpentinites from mid-ocean ridges, passive margins and fore-arcs, whereas the extents of enrichments are often specific to the geodynamic setting. Variability in relative trace element enrichments within a specific setting (and locality) can be several orders of magnitude. Mid-ocean ridge serpentinites often show pronounced bulk-rock U enrichment in addition to ubiquitous Cl, B and Sr enrichment. They also exhibit positive Eu anomalies on chondrite-normalized rare earth element plots. Passive margin serpentinites tend to have higher overall incompatible trace element contents than mid-ocean ridge and fore-arc serpentinites and show the highest B enrichment among all the studied serpentinites. Fore-arc serpentinites are characterized by low overall trace element contents and show the lowest Cl, but the highest Rb, Cs and Sr enrichments. Based on our data, subducted dehydrating serpentinites are likely to release fluids with high B/Nb, B/Th, U/Th, Sb/Ce and Sr/Nd, rendering them one of the potential sources of some of the characteristic trace element fingerprints of arc magmas (e.g. high B/Nb, high Sr/Nd, high Sb/Ce). However, although serpentinites are a substantial part of global subduction zone chemical cycling, owing to their low overall trace element contents (except for B and Cl) their geochemical imprint on arc magma sources (apart from addition of H2O, B and Cl) can be masked considerably by the trace element signal from subducted crustal component

    Reconstructing annual inflows to the headwater catchments of the Murray River, Australia, using the Pacific Decadal Oscillation

    Get PDF
    The Pacific Decadal Oscillation (PDO) is a major forcing of inter-decadal to quasi-centennial variability of the hydroclimatology of the Pacific Basin. Its effects are most pronounced in the extra-tropical regions, while it modulates the El Nino Southern Oscillation (ENSO), the largest forcing of global inter-annual climate variability. PalaeoPDO indices are now available for at least the past 500 years. Here we show that the \u3e500 year PDO index of Shen et al. (2006) is highly correlated with inflows to the headwaters of Australia\u27s longest river system, the Murray-Darling. We then use the PDO to reconstruct annual inflows to the Murray River back to A.D. 1474. These show penta-decadal and quasi-centennial cycles of low inflows and a possible 500 year cycle of much greater inflow variability. Superimposed on this is the likely influence of recent anthropogenic global warming. We believe this may explain the exceptionally low inflows of the past decade, the lowest of the previous 529 years

    Ultra-trace element characterization of the central Ottawa River basin using a rapid, flexible, and low-volume ICP-MS method

    Get PDF
    Ultra-trace (<1 ng g-1) rare earth elements and yttrium (REE+Y) and high field strength element (HFSE) geochemistry of freshwater can constrain element sources, aqueous processes in hydrologic catchments, and the signature of dissolved terrestrial fluxes to the oceans. This study details an adapted method capable of quantifying ≥38 elements (including all REE+Y, Nb, Ta, Zr, Hf, Mo, W, Th, U) with minimal sample preparation in natural water aliquots as low as ≤2 mL. The method precision and accuracy are demonstrated using measurement of the National Research Council – Conseil national de recherches Canada (NRC-CNRC) river water certified reference material (CRM) SLRS-6 sampled from the Ottawa River (OR). Data from SLRS CRM are compared to those of new, filtered (HREE-enriched REE+Y patterns, small natural positive Y and Gd anomalies, and negative Eu and Ce anomalies. These REE+Y features are coherent downstream in the OR apart from amplification of Eu and Ce anomalies during REE removal/dilution. The OR samples capture a downstream decrease in sparingly soluble HFSE (Th, Nb, Ta, Zr, Hf), presumably related to their colloid-particulate removal from the dissolved load, accompanied by crustal Zr/Hf (32.5 ± 5.1) and supercrustal Nb/Ta (25.1 ± 7.7) ratios. Subcrustal Th/U (0.17-0.96) and supercrustal Mo/W (12.0-74.5) ratios in all ORB waters indicate preferential release and aqueous solubility of U>Th and Mo>W, with the latter attributed primarily to preferential W adsorption on soil or upstream aquatic (oxy)(hydr)oxide surfaces

    Juvenile crust formation in the Zimbabwe Craton deduced from the O-Hf isotopic record of 3.8–3.1 Ga detrital zircons

    Get PDF
    Hafnium and oxygen isotopic compositions measured in-situ on U-Pb dated zircon from Archaean sedimentary successions belonging to the 2.9-2.8 Ga Belingwean/Bulawayan groups and previously undated Sebakwian Group are used to characterize the crustal evolution of the Zimbabwe Craton prior to 3.0 Ga. Microstructural and compositional criteria were used to minimize effects arising from Pb loss due to metamorphic overprinting and interaction with low-temperature fluids. 207 Pb/206 Pb age spectra (concordance >90%) reveal prominent peaks at 3.8, 3.6, 3.5, and 3.35 Ga, corresponding to documented geological events, both globally and within the Zimbabwe Craton. Zircon delta O-18 values from +4 to +10% point to both derivation from magmas in equilibrium with mantle oxygen and the incorporation of material that had previously interacted with water in near-surface environments. In epsilon(Hf)-time space, 3.8-3.6 Ga grains define an array consistent with reworking of a mafic reservoir ((176) Lu/(177) Hf similar to 0.015) that separated from chondritic mantle at similar to 3.9 Ga. Crustal domains formed after 3.6 Ga depict a more complex evolution, involving contribution from chondritic mantle sources and, to a lesser extent, reworking of pre-existing crust. Protracted remelting was not accompanied by significant mantle depletion prior to 3.35 Ga. This implies that early crust production in the Zimbabwe Craton did not cause complementary enriched and depleted reservoirs that were tapped by later magmas, possibly because the volume of crust extracted and stabilised was too small to influence (asthenospheric) mantle isotopic evolution. Growth of continental crust through pulsed emplacement of juvenile (chondritic mantle-derived) melts, into and onto the existing cratonic nucleus, however, involved formation of complementary depleted subcontinental lithospheric mantle since the early Archaean, indicative of strongly coupled evolutionary histories of both reservoirs, with limited evidence for recycling and lateral accretion of arc-related crustal blocks until 3.35 Ga. (C) 2017 Elsevier Ltd. All rights reserved

    Trace element and Pb isotope fingerprinting of atmospheric pollution sources: A case study from the east coast of Ireland

    Get PDF
    Unravelling inputs of multiple air pollution sources and reconstructing their historic contribution can be a difficult task. Here, new trace metal concentrations and Pb isotope data were combined for a radionuclide (210Pb-241Am) dated peat core from the Liffey Head bog (LHB) in eastern Ireland in order to reconstruct how different sources contributed to the atmospheric pollution over the past century. Highest enrichments in the heavy metals Pb, Cu, Ag, Sn, and Sb, together with a Pb isotope composition (206Pb/204Pb: 18.351 ± 0.013; 206Pb/207Pb: 1.174 ± 0.012) close to that of the Wicklow mineralisation demonstrates significant aerial influx of heavy metals from local mining and smelting activities during the 19th century until ca. 1940s. A dramatic compositional shift defined by elevated Co, Cr, Ni, Mo, Zn, and V enrichments and a sharp transition towards unradiogenic 206Pb values (206Pb/204Pb: 18.271 ± 0.013–17.678 ± 0.006; 206Pb/207Pb: 1.170 ± 0.012–1.135 ± 0.007) is documented from the 1940s until ca. 2000. These are attributed to the atmospheric impact of fossil fuels and especially leaded petrol, modelled to have contributed between 6 and 78% to the total Pb pollution at this site. The subsequent turn to a more radiogenic Pb isotope signature since 2000 in Ireland is clearly documented in the investigated archive (206Pb/204Pb: 17.930 ± 0.006; 206Pb/207Pb: 1.148 ± 0.007) and reflects the abolishment of leaded petrol. However, there remains a persisting and even increasing pollution in Ni, Mo, Cu, and especially Zn, collectively originating from countrywide use of fossil fuels(peat, coal, heating oil, and unleaded vehicle fuels) for domestic and industrial purposes. This illustrates the continued anthropogenic influence on important natural archives such as bogs in Ireland despite the phase-out of leaded petrol

    Palaeo-dust records: a window to understanding past environments

    Get PDF
    Dust entrainment, transport over vast distances and subsequent deposition is a fundamental part of the Earth system. Yet the role and importance of dust has been underappreciated, due largely to challenges associated with recognising dust in the landscape and interpreting its depositional history. Despite these challenges, interest in dust is growing. Technical advances in remote sensing and modelling have improved understanding of dust sources and production, while advances in sedimentology, mineralogy and geochemistry (in particular) have allowed dust to be more easily distinguished within sedimentary deposits. This has facilitated the reconstruction of records of dust emissions through time. A key advance in our understanding of dust has occurred following the development of methods to geochemically provenance (fingerprint) dust to its source region. This ability has provided new information on dust transport pathways, as well as the reach and impact of dust. It has also expanded our understanding of the processes driving dust emissions over decadal to millennial timescales through linking dust deposits directly to source area conditions. Dust provenance studies have shown that dust emission, transport and deposition are highly sensitive to variability in climate. They also imply that dust emissions are not simply a function of the degree of aridity in source areas, but respond to a more complex array of conditions, including sediment availability. As well as recording natural variability, dust records are also shown to sensitively track the impact of human activity. This is reflected by both changing dust emission rates and changing dust chemistry. Specific examples of how dust responds to, and records change, are provided with our work on dust emissions from Australia, the most arid inhabited continent and the largest dust source in the Southern Hemisphere. These case studies show that Australian dust emissions reflect hydro-climate variability, with reorganisation of Australian dust source areas occurring during the mid to late Holocene. Dust emissions are shown to sensitively map the structure of the Last Glacial Maximum in Australia, demonstrating that this period was associated with enhanced, but also variable dust emissions, driven by changing sources area conditions. Finally we show how dust emissions have responded to the arrival of Europeans and the associated onset of broad-scale agriculture across the Australian continent

    Silicon and chromium stable isotopic systematics during basalt weathering and lateritisation: A comparison of variably weathered basalt profiles in the Deccan Traps, India

    Full text link
    Global biomass production is fundamentally affected by the hydrological cycling of elements at the Earth's surface. Continental weathering processes are the major source for most bio-essential elements in marine environments and therefore affect primary productivity. In addition, critical zone biomass depends on energy and chemical exchange reactions in weathering profiles. The latter reservoirs are in turn influenced by different climatic conditions that control weathering and pore water parameters like pH and Eh, which regulate mineral break down rates and dictate the mobility and mass flux of elements. Two Deccan Traps basalt weathering profiles of contrasting age and alteration intensity provide a natural laboratory for investigating the effects of rock alteration on Si and Cr and their isotopic. systematics. The Quaternary Chhindwara profile has progressed to a moderate degree of alteration (saprolite), while the Paleogene Bidar example displays an extremely altered laterite. The Chhindwara saprolite profile shows a near uniform Cr and Si concentration and isotopic composition, whereas the Bidar laterite profile is characterised by an intense loss of Si, a large enrichment of Cr within the most altered uppermost levels, and a wide range of Cr stable isotope ratios (-0.85 to 0.36 parts per thousand delta Cr-53/52). A co-variation between Si and Cr isotopes, as well as their co-variation with iron content, provides empirical evidence that iron redistribution within the profile has a large effect on Cr mobility and Si isotopic fractionation. Therefore, it is concluded that iron oxides exert a primary control over the isotopic composition of both Cr and Si in pore waters of laterites. Since laterite formation is promoted by tropical climates, the results of this study provide new evidence to suggest that the hydrological Cr and Si fluxes originating from continental weathering have changed in accordance with large-scale, deep time climate variation and continental plate configuration. An increased flux of Si and greater magnitude of Cr mobility and isotopic fractionation are possibly amplified under CO2-rich, greenhouse episodes and/or when large landmasses were tectonically arranged at near equatorial latitudes

    Geochemistry and secular geochemical evolution of the earth's mantle and lower crust

    No full text
    The incompatible elements U and Th are related to Pb via radioactive decay. Extraction, modifi cation and storage of continental crust have, over time, left an isotopic record in the continental crust itself and in the depleted portion of the mantle. Ancient lower crustal xenoliths require that crust has matured by upward transport of radioactive heat - producing elements; hundreds of millions of years after formation. Recycling of continental material has contributed in at least three ways to the generation of enriched mantle - melt sources. First, this has occurred by delamination of lower crustal segments back into the mantle. Second, sediment has been recycled back into the mantle in subduction zones, and third, since the oxygenation of the atmosphere, seawater U, weathered from the continents, has been incorporated into hydrated oceanic crust with which it has ultimately been recycled back into the mantle. The joint treatment of the lower continental crust and the mantle in terms of their geochemgeochemistry and their isotopic evolution may seem, at fi rst, a less than obvious choice. They are, however, related in the sense that the evidence for their evolution is largely of indirect nature, either inferred from rare xenoliths or via products of partial melting. Any joint treatment of these two geochemical reservoirs also inherently carries with it the assumption that they have, at least in part, mutually infl uenced each other's temporal evolution. Before attempting to condense into an opening book chapter the relevant aspects of the exhaustive body of knowledge about the geochemistry of the mantle and the much sparser information regarding the lower crust, it is necessary to remind ourselves of the evidence for their mutually related evolutions.</p

    Evaporative loss of moderately volatile metals from the superheated 1849 Ma Sudbury impact melt sheet inferred from stable Zn isotopes

    No full text
    The retention of moderately volatile elements on the growing Earth remains a major uncertainty in models of terrestrial accretion. Large impactors were the main carriers of accreted material but their mutual energetic collisions and impacts onto the Earth also caused chemical fractionation for which limited experimental data exist. The objective of this work was to study several moderately volatile elements in the third-largest impact basin preserved on Earth at Sudbury, Ontario. We conducted a new chemostratigraphic transect (n=41) of Zn isotope ratios and concentrations by analysing melt sheet and basin fill samples. The data were compared to common Pb, Cs, Cd and Sb concentration systematics. Within the crystallised melt sheet there are strong trends in the extent of moderately volatile element deficits, Zn isotope composition (δ66/64ZnJMC-L from 0.18 to 0.47‰) and initial Pb isotope composition. The combined evidence suggests that these trends reflect footwall contamination of a melt sheet that had experienced evaporative Zn-loss of up to 75–80%. Accounting for plausible isotopic signatures of target rocks, the maximum mass-dependent Zn isotope fractionation ε was 0.29 ± 0.04‰ (1 s.d.), which translates to modest fractionation factors α=0.99986 to 0.99975. This is comparable to melt fallout-glass and fused sands from nuclear detonation sites. We attribute the observed Zn loss and isotope fractionation to the formation of the impact melt. The rapid formation of a solid lid of breccias upon seawater ingress may have prevented stronger evaporative loss and isotope fractionation. Within the crater fill, there is an up-stratigraphy increase in Zn isotope variability (δ66/64ZnJMC-L from 0.29 to 1.05‰). Combined with evidence for biogenic reduced C, this suggests sedimentation of authigenic particulates within an enclosed crater sea. In the melt sheet, the Zn-Pb and Rb-Cs pairs experienced different extents of maximum evaporative loss (Pb up to 98.4% vs. Zn 78%; and Cs ∼90% vs. Rb ∼30%). The relative loss pattern could reflect evaporation from superheated silicate melt at ∼1,450 °C and 1 atm. Loss from super-liquidus melts formed by bolide impacts could have been a significant process shaping the Earth's volatile and moderately volatile inventory.</p

    A reconstitution approach for whole rock major and trace element compositions of granulites from the kapuskasing structural zone

    No full text
    Current estimates for the composition of the lower continental crust show significant variation for the concentrations of the highly incompatible elements, including large uncertainties for the heat-producing elements. This has consequences for models of the formation of lower crust. For example, is lower continental crust inherently poor in incompatible elements or has it become so after extraction of partial melts caused by thermal incubation? Answering these questions will require better agreement between estimates for the chemistry of the lower crust. One issue is that granulite samples may have been altered during ascent. Xenoliths often experience contamination from the entraining alkaline magma, potentially resulting in elevated concentrations of incompatible trace elements when analysed by conventional bulk rock techniques. To avoid this, we assessed an in situ approach for reconstructing whole rock compositions with granulites from the Kapuskasing Structural Zone, Superior Province, Canada. As terrain samples, they have not been affected by host magma contamination, and as subrecent glacial exposures, they show minimal modern weathering. We used scanning electron microscope electron dispersive spectroscopy (SEM-EDS) phase mapping to establish the modal mineralogy. Major and trace element concentrations of mineral phases were determined by electron microprobe and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), respectively. These concentrations were combined with the modal mineralogies to obtain reconstructed whole rock compositions, which were compared to conventional bulk rock analyses. The reconstructed data show good reproducibility relative to the conventional analyses for samples with massive textures. However, the conventional bulk rock chemistry systematically yields higher K concentrations, which are hosted in altered feldspars. Thus, even in terrain samples, minor alteration can lead to elevated incompatible element estimates that may not represent genuine lower continental crust.</p
    • …
    corecore