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Abstract: Ultra-trace (<1 ng g-1) rare earth elements and yttrium (REE+Y) and high field strength element (HFSE) 

geochemistry of freshwater can constrain element sources, aqueous processes in hydrologic catchments, and the 

signature of dissolved terrestrial fluxes to the oceans. This study details an adapted method capable of quantifying 

≥38 elements (including all REE+Y, Nb, Ta, Zr, Hf, Mo, W, Th, U) with minimal sample preparation in natural water 

aliquots as low as ≤2 mL. The method precision and accuracy are demonstrated using measurement of the National 

Research Council – Conseil national de recherches Canada (NRC-CNRC) river water certified reference material 

(CRM) SLRS-6 sampled from the Ottawa River (OR).  

Data from SLRS CRM are compared to those of new, filtered (<0.45 µm) stream water samples from the 

central Ottawa River basin (ORB), and discussed in terms of processes and geochemical signatures inherited from the 

highly evolved igneous/metamorphic Archean and Proterozoic bedrock in the catchment. The ORB waters have 

significantly LREE>HREE-enriched REE+Y patterns, small natural positive Y and Gd anomalies, and negative Eu 

and Ce anomalies. These REE+Y features are coherent downstream in the OR apart from amplification of Eu and Ce 

anomalies during REE removal/dilution. The OR samples capture a downstream decrease in sparingly soluble HFSE 

(Th, Nb, Ta, Zr, Hf), presumably related to their colloid-particulate removal from the dissolved load, accompanied by 

crustal Zr/Hf (32.5 ± 5.1) and supercrustal Nb/Ta (25.1 ± 7.7) ratios. Subcrustal Th/U (0.17-0.96) and supercrustal 

Mo/W (12.0-74.5) ratios in all ORB waters indicate preferential release and aqueous solubility of U>Th and Mo>W, 

with the latter attributed primarily to preferential W adsorption on soil or upstream aquatic (oxy)(hydr)oxide surfaces.  

Keywords: ICP-MS; trace elements; rare earth elements and yttrium (REE+Y); high field strength elements (HFSE); 

Zr/Hf; Nb/Ta; certified reference material (CRM); SLRS-6; river water; Ottawa River  



 

1. Introduction 

Ultra-trace element (<1 ng g-1) signatures in the dissolved load of river waters are valuable fingerprints of natural 

and anthropogenic element sources, as well as numerous soil-to-aqueous processes operating in a hydrologic 

catchment. Notably, the rare earth elements plus yttrium (REE+Y) (Elderfield et al. 1990, Bau and Dulski 1996, 

Johannesson and Hendry 2000, Lawrence et al. 2006c, Leybourne and Johannesson 2008, Kulaksız and Bau 2013, 

Tepe and Bau 2014, Armand et al. 2015, Duvert et al. 2015, Pédrot et al. 2015, Gill et al. 2018) and the high field 

strength elements (HFSE; Mo, W, Nb, Ta, Zr, Hf, Th, U) (Tosiani et al. 2004, Tepe and Bau 2014, Censi et al. 2018, 

Zuddas et al. 2018) can reveal insight into catchment- to global-scale chemical weathering and particle-reaction 

processes. These elements enter and are transported through the dissolved load in the terrestrial realm of the 

hydrosphere largely bound to colloids (Pokrovsky et al. 2006) with rivers ultimately constituting a major source to the 

oceans (van de Flierdt et al. 2004, Rickli et al. 2010). As such, the geochemical cycle and fractionation of REE+Y and 

HFSE (e.g. Nd vs. Hf) in the terrestrial environment exerts an important control on oceanic budgets and associated 

isotopic signatures available for scavenging by mineral particles or organic matter and sequestration in marine 

sediments (Bau and Koschinsky 2006, Godfrey et al. 2009, Rickli et al. 2009, Firdaus et al. 2011, Schmidt et al. 2014). 

However, the mechanisms releasing and fractionating the elements from bedrock through to riverine transport prior 

to the zones of estuarine mixing/submarine discharge into the oceans remain poorly understood, especially for the 

HFSE (e.g. Nb/Ta, Zr/Hf, Mo/W). Some documented REE+Y-HFSE fractionation patterns from crustal source to 

oceanic sink have been traced as far back as the Archean, such that reconstructing these cycles can reveal important 

aspects of the emergence and weathering of ancient crust and, consequently, the evolution of the lithosphere-

atmosphere-hydrosphere through geological time (Viehmann et al. 2014, Viehmann et al. 2018).  

The REE+Y and HFSE, although only sparingly soluble (Taylor and McLennan 1985), show a significantly 

greater magnitude of relative fractionation in aqueous systems than in solid Earth systems, due to differential mineral 

weathering (Patchett et al. 1984) and various ligand and electron chemistry controls (Bau 1996). By example, the 

isovalent and near-identical ionic radii Zr(IV)-Hf(IV) and Nb(V)-Ta(V) pairs are often colloquially referred to as 

“geochemical twins” due to their limited fractionation during solid Earth processes  (e.g. partial melting and fractional 

crystallization). The Zr/Hf ratio of various compositional estimates of the upper continental crust are similar, such as 

MuQ (36.9) (Kamber et al. 2005), global subducted sediment (32.0) (Plank and Langmuir 1998), and the composite 

of Rudnick and Gao (2014) (36.4). Similarly, the Nb/Ta ratios of upper continental crust are generally between 11-14 

(Barth et al. 2000, Rudnick and Gao 2014). By contrast, the Zr-Hf and Nb-Ta pairs show significantly fractionated 

and generally supercrustal ratios in the hydrosphere. The Nb/Ta and Zr/Hf ratios reported from filtered Pacific Ocean 

water range from 46-349 (mean: 184) and 13-85 (mean: 26), respectively (Firdaus et al. 2011, Niu 2012). However, 

aquatic Nb-Ta and Zr-Hf studies to date have focused primarily on marine environments (Firdaus et al. 2011, Schmidt 

et al. 2014, Firdaus et al. 2018, Censi et al. 2019). Fractionation of Zr/Hf in rivers has been more fully documented in 

recent years (Godfrey et al. 1996, Godfrey et al. 2008, Zuddas et al. 2017, Censi et al. 2018, Zuddas et al. 2018), but 

there are very limited constraints on Nb/Ta fractionation in rivers due to the scarcity of Ta data (Filella 2017). At face 

value, consensus points towards supercrustal ratios being generated via removal of Ta>Nb and Hf>Zr during particle 

interaction, but opposing trends of fractionation with changing Nb and Zr abundances points to different controlling 



 

particles, adsorption mechanisms, or biogeochemical effects that require further work to unravel (Firdaus et al. 2011, 

Niu 2012). 

The compiled trace element chemistry of major rivers can place important baseline constraints on terrestrial 

fractionation processes and are used to calculate element fluxes to the oceans. However, very few rivers have been 

fully characterized for a comprehensive suite of dissolved ultra-trace elements (Gaillardet et al. 2014). The Ottawa 

River in Canada is one of the best characterized examples due to it being the source of the National Research Council 

– Conseil national de recherches Canada (NRC-CNRC) series of SLRS natural river water certified reference materials 

(CRM). The SLRS CRM are frequently used for natural water data quality assurance/quality control (QA/QC) in 

laboratories across the globe (Yeghicheyan et al. 2001, Barroux et al. 2006, Lawrence et al. 2006a, Dick et al. 2008, 

Bayon et al. 2011, Heimburger et al. 2013, Yeghicheyan et al. 2013, Hoang et al. 2019). Consequently, these data are 

opportunistically taken as representative of the trace element and isotopic composition of the Ottawa River for global 

compilation studies (Archer and Vance 2008, Vance et al. 2008, Gaillardet et al. 2014). However, the SLRS CRM 

series represent only a well-characterized composition of the river at a singular location and time. The only targeted 

trace element study of the Ottawa River with a wide spatial coverage predated the development of low-level, high-

precision mass spectrometry techniques (Merritt 1975).  

There are two primary facets of this study: (1) characterization of ultra-trace elements in the dissolved load of 

the Ottawa River and selected tributaries near to and upstream of the SLRS CRM series sampling sites; and (2) 

demonstration of the precision, accuracy, and portability of a method capable of rapidly determining ultra-trace 

elements in natural waters, including all REE+Y and several HFSE (Nb, Ta, Zr, Hf, Mo, W, Th, U). The method is 

applied to SLRS-6, the current SLRS CRM generation distributed by NRC-CNRC, and a suite of newly collected 

samples from the Ottawa River basin (ORB). This is the first study to provide baseline ultra-trace element 

geochemistry across the wider ORB with the aim to understand weathering source, downstream riverine fractionation, 

and potential roles of anthropogenic influence.  

The new contributions from this study are relevant to different parts of the Earth science community. First, the 

Ottawa River and several of its tributaries drain Precambrian shield rocks, such that the samples capture the 

geochemical signature exported to rivers from the weathering of ancient evolved crust. The focus of this study is on 

full REE+Y patterns and anomalies (La, Ce, Eu, Gd, Y) and HFSE abundances and ratios (Nb/Ta, Zr/Hf, Mo/W, 

Th/U) to shed new light on the terrestrial fractionation of these elements in a silicate-dominated catchment. Notably, 

in addition to being useful natural process tracers, these element groups include a number of “technology-critical 

elements” with the potential to emerge as environmental contaminants and thus the ORB results also help improve 

our understanding of their environmental baselines (Filella and Rodríguez-Murillo 2017, Balaram 2019). Second, 

SLRS-6 is certified for only a limited number of trace elements, and certification does not include the REE+Y and 

most of the HFSE. Thus, the community relies on published values for inter-laboratory testing (Fisher and Kara 2016, 

Filella and Rodushkin 2018). Published SLRS-6 ultra-trace element data are scarce but now increasing in availability, 

especially for the REE (Amorim et al. 2019, Lerat-Hardy et al. 2019, Schmidt et al. 2019, Yeghicheyan et al. 2019). 

This study provides new SLRS-6 abundance data for 11 certified elements and 27 uncertified elements, including the 

HFSE that can be used as informational values. Finally, this contribution outlines a direct analysis quadrupole 



 

inductively coupled plasma mass spectrometer (Q-ICP-MS) method updated from Lawrence et al. (2006a) that can 

produce high-precision data for ≥38 elements on aliquots of water down to volumes as low as ≤2 mL. One of the 

primary barriers to understanding the REE+Y and HFSE in natural waters is their very low abundance that often 

requires laborious pre-concentration to overcome (Bau and Dulski 1996, Bayon et al. 2011, Viehmann et al. 2014, 

Fisher and Kara 2016, Viehmann et al. 2018, Hoang et al. 2019). The method outlined here requires minimal 

preparation and can produce data for all HFSE and REE+Y in parallel with numerous other water tracers (e.g. Sr, Ca, 

Mg, Na, K, Li, Rb), assuming sufficient natural abundance levels and strict control of blank through clean laboratory 

handling. 

2. Overview and geological context of the Ottawa River basin (ORB) 

 The Ottawa River (or “Great River” as translated from the Algonquin name Kichesippi) is classified as a 

lacustrine river spanning 1271 km through interconnected lakes, man-made dams/reservoirs, waterfalls, and rapids 

that form a significant extent of the Ontario-Québec provincial border. The Ottawa River has 28 major tributaries, 24 

of which are downstream of Lake Timiskaming, and a mean discharge of 1948 m3 s-1 before draining into the St. 

Lawrence River (Figure 1). The ORB covers an area of 146,334 km2 within the wider St. Lawrence river basin (Thorp 

et al. 2005) with a bedrock geology dominated by Archean-Proterozoic plutonic and metamorphic rocks at 88% with 

lesser amounts of Archean volcanic rocks (4%) and Paleozoic sedimentary rocks (8%) (Baer et al. 1978, Telmer 1997). 

The Precambrian bedrock that extends throughout the northern and central parts of the ORB belongs predominantly 

to the Archean Superior Province near its southern contact with the Proterozoic Grenville Province, whereas a smaller 

area of the Proterozoic Huronian Supergroup of the Southern Province is exposed in the northwest part of the 

catchment (Card 1990). A simplified geological map showing the extensive coverage of the Archean-Proterozoic 

felsic gneisses and plutonic bedrock is presented in Figure 2 (Telmer 1997, Telmer and Veizer 1999). The upper ORB 

has only sparse Quaternary till cover and generally thin soils relative to the lower ORB (Shilts et al. 1987, Telmer 

1997) and was also not influenced by the Champlain Sea glaciomarine sediments deposited during recession of the 

Laurentide Ice Sheet (Parent and Occhietti 1988, Occhietti 1989).    

Outside of the geochemical data available for the SLRS CRM series (Archer and Vance 2008, Vance et al. 2008, 

Gaillardet et al. 2014), studies at the catchment scale of the Ottawa River basin to date have focused on C-O-H stable 

isotope biogeochemistry (Telmer 1997, Telmer and Veizer 1999, Telmer and Veizer 2000). Other studies have 

reported a more limited major element, trace element, and Sr and S isotope dataset (Merritt 1975, Wadleigh et al. 

1985, Yang et al. 1996, Telmer 1997, Rondeau et al. 2005). Data from these studies place context on the spatial 

distribution of natural and anthropogenic inputs to river waters of the ORB. Most important to this study is that the 

upper ORB has silicate rock-dominated geochemical signatures (e.g., high 87Sr/86Sr, low total dissolved solids and Ca-

Mg) with limited anthropogenic influence. In the southern ORB, these signatures show a transition towards a greater 

influence from the Phanerozoic sedimentary rocks, agriculture, and other anthropogenic activity associated with 

higher population density (Wadleigh et al. 1985, Yang et al. 1996).     

 

[FIGS. 1 & 2 APPROXIMATELY HERE] 



 

3. Materials and methods 

3.1. SLRS CRM and SLRS-6 handling 

This contribution considers primarily the latest four generations of the SLRS CRM, SLRS-3 to SLRS-6. All are 

from the Ottawa River, with SLRS-3 and SLRS-4 sampled near Chenaux, Ontario, and SLRS-5 and SLRS-6 sampled 

from the untreated water at the Britannia Water Purification Plant near Ottawa, Ontario (Figure 1). In each case, river 

water was filtered through 0.2 µm membranes, acidified to pH 1.6 using ultrapure HNO3, stored and blended in a 

polyethylene tank, and subsequently bottled into individual polyethylene containers for CRM distribution.  

All samples for this study were analyzed at either the Isotope Group facility at University of Tübingen (“UT 

Setup”) or the geochemistry facility at University of Dublin, Trinity College (“TCD Setup”). All field samples and 6 

separate bottles of SLRS-6 (arbitrarily labelled UT-01, UT-02, UT-03, UT-04, UT-05, UT-06) purchased from NRC-

CNRC in September 2018 were measured with the UT Setup, whereas 1 bottle of SLRS-6 (labelled TCD-01) 

purchased in November 2016 was measured using the TCD Setup. 

For the UT Setup, a 35 mL aliquot from each SLRS-6 CRM bottle was poured from the original, well-shaken 

bottles into pre-leached (0.8 M HNO3 for ≥7 days) 50 mL polypropylene (PP) centrifuge tubes in a Class 10-100 (US 

FED standard class) clean laboratory. A further aliquot, referred to as UT-Mix, was prepared by combining ~5 mL 

aliquots of each individual bottle to produce a physical mixture in a separate PP test tube. The original CRM bottles 

were resealed for future isotopic characterization. Most measurements at UT were conducted in 2 experiments over 1 

week in October 2018, with the individual bottle aliquots and the SLRS-6 Mix (k=7) each measured in triplicate (n=3).  

For the TCD Setup, an aliquot of SLRS-6 was extracted from the original bottle prior to each experiment under 

a Class 10-100 hybrid fume hood in a Class 10,000 clean laboratory in a similar manner to the UT Setup. 

Measurements at TCD were conducted across 7 experiments from November 2016 to April 2019, one to characterize 

SLRS-6 comparably to the UT Setup and the remaining analyzed alongside natural water samples as part of routine 

QA/QC.  

3.2. Field sampling and water pre-treatment 

All 29 field samples for this study were taken in the ORB across 10 days in late July-early August of 2018. A 

transect of 14 samples of the Ottawa River between Temiscaming, Ontario and Chenaux, Ontario (the ‘T-C transect’) 

covering ~300 km of flow was taken, ending at the collection site of SLRS-3/SLRS-4 (Figure 1). These samples 

included both well-mixed, rapidly flowing water and gently flowing dam/reservoir water. Additional samples from 4 

tributaries feeding the Ottawa River along the transect, the Rivière Coulonge (n=2), Rivière Noire (n=4), Petawawa 

River (n=3), and Mattawa River (n=2), as well as small lakes/ponds (n=4) were taken for comparison. A full list of 

samples with their GPS coordinates is available in Supplementary Table 1. The key aspects of the chosen sample 

locations for this study are their position upstream from Phanerozoic sedimentary rocks of the St. Lawrence Lowlands, 

thicker glacial overburden with deeper soils, and regions of more extensive agricultural land use (Section 2). The 

northernmost part of the transect also starts upstream of the influence of the Champlain Sea (Figure 2). Thus, the river 

water chemistry is expected to be controlled largely by the Precambrian shield rocks in the northern areas of the ORB 



 

with minimal anthropogenic influence apart from potential contributions related to current and historic mining 

activities.  

Samples were taken from shore or boat at least 10 cm below the water surface into a collection bottle that was 

thoroughly rinsed by the site water. Samples were filtered through 0.45 µm nylon membranes using a ThermoFisher 

Nalgene system equipped with a hand or electric pump. Accordingly, the dissolved load is defined operationally in 

this study as the truly dissolved fraction and fine particulates/colloids passing the 0.45 µm filter. The filtration system 

was reused with a new filter for each sample after thorough rinsing with ultra-pure water followed by the site water. 

Filtered samples were transferred to low-density polyethylene (LDPE) bottles that were previously acid-leached (0.5 

M HNO3 for 2 weeks), rinsed with ultra-pure water, and sealed until the point of field use. The LDPE bottles were 

filled with headspace only for acidification, capped, and sealed for shipping to the University of Bern. Strict 

cleanliness of sampling gear and careful field protocols (including pre-leaching bottles and filtration equipment and 

consumables, as well as a “clean hands, dirty hands” approach to field work) are vital steps in acquiring ultra-trace 

data from rivers, groundwater, and precipitation (e.g., Horowitz et al. 1994, Lawrence et al. 2006c, Shotyk and 

Krachler 2009, Shotyk et al. 2017, Gill et al. 2018). At each site, probe measurements of water temperature, pH, Eh, 

and dissolved oxygen were taken, as will be described and reported in a separate study. An overview of the full method 

from field sampling to laboratory analysis is illustrated in Figure 3, including an example of one of the Ottawa River 

sampling sites (Sample RRR01), the use of a “clean hands, dirty hands” approach to water sampling and probe 

measurements, and the minimal laboratory steps needed to acquire ultra-trace element data.  

Due to international shipping logistics, samples were acidified after transfer to the clean laboratory at the 

University of Bern. Acidification occurred within 2 weeks of field collection using ultra-pure concentrated HNO3 to 

bring samples to a final acid concentration of ~0.5 M HNO3. No visible changes to the water colour or evidence of 

precipitate formation occurred prior to acidification or after acidification prior to measurement. A 10 mL aliquot of 

each acidified sample was transferred to a separate pre-acid leached and rinsed (as per the LDPE bottles) 

polypropylene (PP) centrifuge tube for shipping to the University of Tübingen for ultra-trace element analysis. All of 

the collected ORB samples were treated identically to the SLRS CRM samples (as per the UT Setup) from this point 

forward. 

[FIG. 3 APPROXIMATELY HERE] 

 

3.3. Laboratory conditions and sample preparation for ultra-trace element analysis 

Ultra-pure (≥18.2 MΩ) water from Millipore Milli-Q® units was used for all reagent dilution and labware rinsing 

in both the UT and TCD Setups. All diluted HNO3 was prepared from sub-boiling distilled concentrated stock: 3x 

progressive distillation of laboratory grade acid with an Analab CleanAcids® unit in the TCD Setup and 1x distillation 

of pro analytical grade acid with a Savillex DST-1000® unit in the UT Setup. 

For the UT Setup, a gravimetric mixture of 9.0 g of water sample and 1.0 g of a multi-element/enriched isotope 

(6Li, In, Re, Bi) internal standard in a 0.45 M HNO3 matrix was prepared for analysis in 15 mL PP centrifuge tubes. 

For the TCD Setup, a gravimetric mixture of 1.8 g of SLRS-6 and 0.2 g of a multi-element/enriched isotope (6Li, Rh, 



 

Re, Bi, 235U) internal standard in a 0.45 M HNO3 matrix was prepared for analysis in 2 mL PP micro-centrifuge tubes. 

The analysis solutions of both setups were thus prepared to a nominal, gravimetric dilution factor of 1.11. The different 

measurement volumes are based on each facility’s routine trace element workflows using alternate options on the 

same autosampler (Section 3.4) and each setup has pros and cons relative to the other. The UT Setup requires more 

sample volume, but offers the potential for enhanced measurement signal (e.g. increased uptake rate) and more 

measurement time for either better instrument counting times (increased precision) or the ability to measure more 

analytes. The TCD Setup consumes 5x less sample volume, but at a sacrifice to instrument counting time and/or 

number of analytes that can be measured with high precision. The slightly different internal standard mixtures used at 

each facility is related to the desired analytes (e.g. In is measured routinely at TCD) or availability of high-purity 

enriched isotopes. 

An additional test experiment at UT was undertaken on all 7 SLRS-6 bottles of this study (UT-01 to UT-06 and 

TCD-01) at a nominal, gravimetric dilution factor of 10, with 1.0 g of sample combined with 9.0 g of the multi-element 

internal standard prepared to the same internal standard abundances as the primary experiments. 

3.4. Instrumentation 

A ThermoFisher Scientific iCAP-Q ICP-MS and Elemental Scientific (ESI) SC-2 DX autosampler were used in 

both setups with similar sample interface configuration and data acquisition parameters (Supplementary Table 2), but 

with different sample introduction strategies. The UT Setup used a SC-FAST system and a 4 mL Teflon sample loop 

optimized for rapid, vacuum pump-driven sample uptake and washout, with the sample injected into the ICP-MS using 

its on-board peristaltic pump at 30 rpm. The TCD Setup sample introduction used a custom microFAST system and a 

2 mL Teflon sample loop optimized for slower, syringe-controlled uptake, with the sample injected into the ICP-MS 

using its on-board peristaltic pump at 20-25 rpm. Both setups used either standard (STD; standard cone configuration) 

or high-sensitivity (STDS; high-sensitivity skimmer cone insert added) operating modes. The latter mode was only 

used when an appreciable boost in sensitivity from the interface region was recognized under all other instrument 

conditions being comparable. The use of He in the collision cell for kinetic energy discrimination (KED) was not used 

for this study to retain higher sensitivity for the light mass analytes (6Li, 7Li, 9Be), aiding with more accurate abundance 

determination of Li and Be and resulting in a more robust drift correction in the interpolated light mass region.  

3.5. Measurement method 

The mass spectrometry method is built on the drift-corrected external rock calibration strategy originally 

developed by Eggins et al. (1997) and its adaptation for natural waters as described in Lawrence et al. (2006a). A key 

aspect of the method is the two-fold correction for signal drift and ionization differences between calibration standards 

and unknowns. An initial internal standard correction is applied to all samples relative to a pure internal standard 

solution measured at the onset of the experiment and using a linear interpolation for the analytes between internal 

standard masses. The second correction for residual drift, most prominent in the low- to mid-mass range (between 6Li 

and Rh or In), is applied to every analyte mass based on linear interpolation between repeat measurements of a monitor 



 

solution (bracketing every 4-6 unknowns). The experiment measure order for the new ORB samples was out of 

sequence from their downstream positions, and included a mix between the Ottawa River and tributary samples. 

Sample washout after measurement of digested rock RM was monitored closely on all analytes to ensure return 

to background levels prior to injecting the natural water samples. The complete washout sequence consisted of an on-

board SC-2 DX inter-sample rinse protocol with an additional 2-stage washout (blank 0.8 M HNO3 followed by 0.45 

M HNO3 run as unknowns with lower acquisition time). Using this strategy, it was not necessary to run calibration 

standards at the end of the experiment as in Lawrence et al. (2006a). Between water samples only the on-board rinse 

protocol was used.  

Common spectral interferences for some analyte masses, including oxides (MO+/M+), hydroxides (MOH+/M+), 

and isobars (M+/M+), were corrected based on routine pre-experiment measurements of production rates from 

pure/mixed element solutions (Dy and Ba+Nd). Other analyte interference rates were scaled linearly based on the 

NdO+/Gd+ production rate from these experiments to the latest bi-annual determination from pure solutions, as 

summarized in Supplementary Table 3 (Aries et al. 2000, Ulrich et al. 2010, Chen et al. 2017). For example, the bi-

annual determination of the SmO+ on 165Ho+ contribution (as 149Sm16O+/149Sm+) alongside NdO+ on 160Gd+ (as 

146Nd16O+/146Nd+) was used to scale the specific experiment’s SmO+ on Ho as: (149Sm16O+/149Sm+)experiment = 

(149Sm16O+/149Sm+)bi-annual x (146Nd16O+/146Nd+)experiment ÷ (146Nd16O+/146Nd+)bi-annual. Other low abundance analytes with 

prominent polyatomic interferences (e.g. 44Ca16O+ on 60Ni+) were either not analyzed or not reported due to the lack 

of He-KED use or a calculated interference correction factor. However, the method is noted to be fully customizable 

to run in He-KED mode to reduce polyatomic interferences. The analytes Na, Mg, K, and Ca are reported without a 

mathematical interference correction (e.g. 38Ar1H+ on 39K+). However, an intra-experiment blank correction for the 

internal standard-bearing 0.45 M HNO3 (highest for K at ~5-9% of the signal in waters at 1.1x dilution) accounts for 

most of this polyatomic background. In the case of Mg, no significant bias from an interference was suspected based 

on the indistinguishable abundances determined from two analyte isotopes (25Mg, 26Mg). 

Calibration used the United States Geological Survey (USGS) RM W-2a (diabase) digested in HF-HNO3 and 

prepared to solutions with gravimetric dilution factors of 10,000-50,000 in the same carrier acid matrix and internal 

standard mixture as natural water unknowns. Initial preparation of the calibration standards via acid digestion is 

described elsewhere for the TCD Setup (Babechuk et al. 2019, and references therein) and UT Setup (Albut et al. 

2018), and references therein) and in further detail in the Supplementary Materials. Calibration lines were constructed 

from 3-6 points (after full procedural blank correction) derived from measurements of variably diluted W-2a RM at 

the beginning of experiments. The calibration line was also cross-checked with an additional W-2a measurement at 

the end of an experiment, which always showed identical signal intensities to those measured at the start (after drift 

correction). Calibration using a single digested rock is a strategy that provides natural relative abundances of elements, 

forms a reasonable matrix match to river waters, minimizes washout/memory effects, and allows recalibration of 

results based on changing consensus of the most probable element abundances in the rock. Further, digested W-2a 

solutions (stored in 0.45 M HNO3) are discarded within 3-6 months and replaced with freshly prepared solutions to 

ensure element abundances are not modified during storage (e.g. via adsorption to PP bottle walls). Internal testing 

shows negligible W-2a analyte signal deterioration within ~6 months, likely aided by the relatively high dilution factor 



 

(1000) of the digested rock in the stock bottles, but use of the same solution for longer is not recommended. The 

preferred W-2a calibration abundances are provided in Supplementary Table 3, as developed, reported, and modified 

across previous studies (Kamber et al. 2003, Kamber 2009, Babechuk et al. 2010, Marx and Kamber 2010, Baldwin 

et al. 2012). The preferred W-2a W calibration abundance of 260 ng g-1 is now updated from its previous value of 240 

ng g-1 based on a recent double-spike W stable isotope study (Kurzweil et al. 2018).  

3.6. Estimation of method detection limits and blanks 

The background equivalent concentration (BEC) is used as a proxy for the full instrument background signal. 

For both setups, a mean (�̅�) BEC for each element is calculated from multiple measurements (𝑥𝑖) of an internal 

standard-bearing 0.45 M HNO3 carrier acid prepared alongside and identically to the samples.  

�̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  (1) 

For the UT Setup, a mean BEC is calculated from 40 (n) individual within-run measurements on 5 blanks over 

2 experiments (1 week in 2018). The mean BEC is ≤1 pg g-1 for 34 elements and ≤100 fg g-1 for 25 of these elements. 

The remaining elements with a higher BEC include the major elements 44Ca (3.4 ng g-1), 25,26Mg (0.1 ng g-1), 39K (36.5 

ng g-1), and 23Na (0.50 ng g-1) with higher polyatomic interference backgrounds and 86Sr (21 pg g-1) and 7Li (183 pg 

g-1) with a higher natural abundance or a minor impurity in the internal standard, respectively. The BEC was equivalent 

to ≤1% of the SLRS-6 signal intensity for 32 elements, between 1-5% for Be and Cd, between 6-15% for K, Sn and 

Ta, and 33% for Li.  

For the TCD Setup, a mean BEC is calculated from 80 individual within-run measurements over 7 experiments 

(2016-2019) (Supplementary Table 3). The mean BEC is slightly higher for most analytes relative to the UT Setup 

and notably higher (>5x) for a smaller group (e.g. Na, Rb Zr, Sn, Sb, Cs, Ba, La, Ce, Eu, W, Tl, Pb, U). Most of the 

increases probably reflect some combination of significantly poorer air purity in the mass spectrometry laboratory, 

greater age of the internal standards, and more diverse array of solution and laser ablation workflows on the instrument 

(adding more blank to the reagents, sample introduction system, etc.) in the TCD facility relative to the UT facility. 

The higher U BEC at TCD is specifically related to a minor impurity in the enriched 235U internal standard. Despite 

inter-facility differences, the mean BEC for TCD analytes is still ≤1 pg g-1 for 25 elements and ≤100 fg g-1 for 15 of 

these elements.  

A filter for the method detection limit was taken as a signal intensity exceeding 3x the BEC value. All elements, 

with the exception of Li, met this requirement for SLRS-6 and most of the natural samples. However, the substantial 

Li background correction in both setups is considered robust due to the consistency of the 6Li internal standard 

impurity added equally to all samples, and thus all data for Li are reported. Blank related to handling of field samples 

from this study was monitored by filtering an equivalent volume of ultra-pure laboratory water through the same filter 

system and treating it the same way as all samples throughout the laboratory. The residual blank was typically within 

or near the limits of the 3x BEC filter and generally required very minimal extra correction to data.  

The primary obstacle to achieving high accuracy and precision using the analytical method applied here is 

minimizing the contribution of blank from sample handling (e.g. leached from filters, blank in the acid used for 

acidification) in addition to any blank contribution from the mixed-element internal standard and the full analytical 



 

workspace from clean laboratory to instrument space (Lawrence et al. 2006a). Additional discussion on blank levels 

using an earlier adaptation of this method acquiring ultra-trace REE+Y data from SLRS CRM SLRS-4 can be found 

in Lawrence et al. (2006b). 

3.7. Estimation of method precision and bias 

The full method precision at both TCD and UT is routinely estimated via repeat analyses of digested, matrix-

appropriate (as dictated by individual studies) rock RM and reported as the standard deviation (s) or percent relative 

standard deviation (%RSD) of the mean (�̅�) abundance determined for each element.  

𝑠 = √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
 (2) 

 

%𝑅𝑆𝐷 = 100 ×
𝑠

�̅�
 (3) 

The estimates reflect within-lab reproducibility over the period of several months to years spanning multiple 

studies, i.e., intermediate precision conditions (Potts 2012). Under these conditions, the %RSD on rock reference 

materials has been demonstrated in previous studies to be excellent (<10% and often <1-3%) for the analytes reported 

in this study in both the TCD and UT laboratories as well as others applying the same method (Kamber 2009, Marx 

et al. 2011, Albut et al. 2018, Rosca et al. 2018, Babechuk et al. 2019). The method precision for river water analysis 

under optimistic repeatability (srepeatability) conditions and more realistic intermediate (sintermediate) conditions is illustrated 

below with the UT (Section 4.1) and TCD (Section 4.2) SLRS-6 results, respectively. Additional discussion on the 

precision of natural water abundance measurements using an earlier adaptation of this method can be found in 

Lawrence et al. (2006a). 

The method accuracy for geological materials is routinely assessed against the compiled values reported in 

Jochum et al. (2016) for uncertified rock RM and the certified and informational values for the rock CRM OU-6 (Potts 

and Kane 2005), as described recently in Albut et al. (2018). For this study, additional accuracy evaluation of rock 

RM is provided through UT results in the GeoPTTM proficiency testing scheme, as detailed in the Supplementary 

Materials. Finally, the accuracy of the SLRS-6 data in this study is assessed directly against the NRC-CNRC certified 

abundances, when available, or against data available in the literature for uncertified abundances (Yeghicheyan et al. 

2019). In all cases, accuracy is assessed quantitatively using a %bias calculation, where �̅� is the data mean from this 

study and µ is the reference value (certified or literature). 

%𝑏𝑖𝑎𝑠 = 100 ×
(�̅�−𝜇)

�̅�
      (4) 

It is noted that while the accuracy of the method is anchored to the preferred W-2a calibration abundances 

(Supplementary Table 3) these values can be revised based on evolving consensus and previously published data can 

be retrospectively re-calibrated with new preferred W-2a values. The compiled W-2 data from Jochum et al. (2016) 

are provided in Supplementary Table 3 for comparison to the UT and TCD laboratories’ preferred values; the bias 

between these two data sets is <5% for 27 trace elements, between 5-10% for Be, Y, Zr, Mo, and Ta, and ~10% for 

Tl and W. For W, there is less consensus on W-2a values due to fewer laboratories producing data for low W natural 

materials. However, excellent agreement is noted between W abundances measured with the method herein and 



 

isotope dilution analyses for several USGS RM (Babechuk et al. 2010, König et al. 2011, Babechuk et al. 2015, Albut 

et al. 2018, Kurzweil et al. 2018). For Tl, it is noted that the mean abundance of 536 ± 26 (2s) ng g-1 for OU-6 recently 

reported in Albut et al. (2018) from this method is identical within uncertainty to the informational value of 540 ng g-

1 reported in Potts and Kane (2005). Moreover, there is also good agreement between lower Tl abundance geological 

RM with this method and the isotope dilution data of Brett et al. (2018). Specifically, the mean (± 2s) Tl abundances 

(ng g-1) of BIR-1 and BHVO-2 determined with this method were 1.27 ± 023 (Albut et al. 2018) and 1.25 ± 0.19 

(Babechuk et al. 2010) and 20.17 ± 0.97 (Albut et al. 2018) and 19.33 ± 0.42 (Babechuk et al. 2010), respectively. 

These abundances agree within 17% of the Brett et al. (2018) values of 1.0 ± 0.4 and 23.0 ± 2.3, respectively, and 

overlap within uncertainty.  

The results submitted to the GeoPTTM proficiency testing scheme from UT for rounds GeoPT43 (dolerite, ADS-

1), GeoPT44 (calcareous shale, ShCX-1), and GeoPT45 (silicified siltstone, GONV-1) as outlined in Webb et al. 

(2018), Webb et al. (2019a), and Webb et al. (2019b), respectively, provide an additional accuracy assessment. These 

results and their implications for the method accuracy are outlined fully in the Supplementary Materials. Most 

importantly, data produced from all GeoPTTM materials for the primary elements of interest to this study (REE+Y, Zr, 

Hf, Nb, Ta, Th, U, Mo, W) show no significant bias relative to consensus values (assigned or provisional) for all 

results submitted and analyzed through the program (Supplementary Table 4). 

4. Results 

4.1. UT SLRS-6 results, between-bottle SLRS-6 consistency, and short-term method precision 

The per-bottle data for the UT Setup are reported in Supplementary Table 5. Splits from the 6 separate bottles 

(units, k=6) of SLRS-6 were measured in triplicate (n=3) across 2 experiments at UT under similar instrument 

conditions. These experiments were designed to evaluate inter-bottle consistency using a one-way analysis of variance 

(ANOVA) approach (Linsinger et al. 2001), compare individual bottle means to the UT-Mix, as well as provide an 

estimation of precision over the duration of a short study.  

An evaluation of the mean of the triplicate measurements from each of the 6 bottles (�̅�) indicates that there is no 

statistical difference with 95% confidence between the bottle means for 37 of the 38 elements. Hafnium is the only 

element where the null hypothesis of the ANOVA test (equivalent bottle means) is rejected, and a post hoc t-test 

indicates that a significant difference exists only between UT-03 and UT-05. However, the low abundance of Hf and 

its higher blank/signal ratio suggest that apparent inter-bottle variability could also be an artefact.  

A further two-tailed t-test (k=2) comparing the mean of the triplicate measurements of the physical SLRS-6 

mixture (SLRS-6 Mix; n=3) with a mean of all measurements from individual bottles (n=18) using a pooled standard 

deviation (Eq. 4) showed no significant difference at 95% confidence for 32 elements. The differences between the 

two means for Na, K, Sn, Pr, Ta, and Th were significant, although the percent difference between mean values did 

not exceed 10%. 

𝑠𝑝𝑜𝑜𝑙𝑒𝑑 = √
[𝑠1

2(𝑛1−1)+⋯𝑠𝑘
2(𝑛𝑘−1)]

(𝑛1−1)+⋯(𝑛𝑘−1)
 (4) 



 

Overall, for all analytes measured and reported from the UT Setup in this study, there are no obvious and 

repeatable indications of inter-bottle heterogeneity. Given the general repeatability of the abundance measurements 

for the 38 elements across the 6 separate bottles and the physical mixture, a compiled full sample mean and standard 

deviation of all measurements (n=21) from each bottle (k=7) is reported in Table 1. The latter standard deviation and 

all others from this point forward are reported as 2s to be at approximately 95% confidence level and consistent with 

the expanded uncertainty (U) with a coverage factor of 2 that is commonly used in reference material assessment 

studies (Linsinger et al. 2001, Heimburger et al. 2013, Yeghicheyan et al. 2013). No statistical filter for outliers is 

applied. The 2RSD is <3% for 31 elements, 3-5% for 3 elements (K, Zr, Nb), and >5% for Be (5.2%), Cd (12%), Sn 

(9.5%), Ta (11%), and Th (5.7%), the analytes with the lowest abundance or higher blank/signal ratios than others. 

The standard deviation on these data is adopted as an estimate of the method precision under repeatability conditions 

(srepeatability) (Potts 2012) and indicates a high level of repeatability within closely spaced (within-week) experiment 

batches. 

4.2. TCD SLRS-6 results and long-term method precision 

For the TCD Setup, a compilation of 42 measurements from 19 individually diluted aliquots of SLRS-6 is used 

to derive a mean and standard deviation. The 2RSD under these conditions is <3% for 30 elements, 3-5% for 3 

elements (Be, Nb, Tl), and >5% for Cd (8.7%), Sn (28%), Ta (12%), and Th (12%). Of the latter elements, Cd, Sn, 

and Ta had higher blank/signal ratios, similar to the UT Setup data, and Th was noted in some experiments to exhibit 

a higher within-experiment signal drift than other heavy mass elements. These data were collected across different 

batches of calibration and internal standards and more variable instrument tuning and operating conditions. Thus, the 

standard deviation of these data provide a more realistic estimate of intermediate precision conditions (sintermediate) 

(Potts 2012) that are relevant to multi-purpose analytical facilities and to aqueous geochemistry studies conducted 

across several seasons and annual cycles. Nevertheless, these data still indicate the method offers high-precision over 

a longer (multi-year) measurement timeframe and illustrate that similar data quality to the UT Setup can be achieved 

from small (≤2 mL) sample volumes (Sections 3.3-3.4).  
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4.3. Comparison of UT and TCD results and compiled SLRS-6 abundance data 

The mean SLRS-6 element abundances from both facilities (n=21, UT; n=42, TCD) were expected to be similar 

due to the common analytical method (calibration, use of internal standards, external drift correction, interference 

correction, etc.). A comparison of the results is first presented in Table 1 through an absolute percent difference (% 

diff.) calculation. The percent difference between the UT and TCD mean values was <3% for 30 elements, 3-7% for 

3 elements (Na, K, Be) and >7% for Sb (7.3%), Ta (7.7%), Tl (7.7%), Pb (11%), and Th (10%). The offsets for Na 

and K are likely related to small differences in background polyatomic interference production on the analyte masses 

(Section 3.5). The larger discrepancy for Be and Ta is attributed predominantly to the very low abundances of these 

elements (e.g. 0.06 pg g-1 for Ta) and lower and more variable signal/blank. The differences between the heavy mass 



 

element (Tl, Pb, Th) abundances are less easily explained, but are suspected to be related to the use of 235U as an 

internal standard in the TCD Setup, which provides a more accurate deconvolution of the heavy mass instrumental 

drift than the projection from Bi in the UT Setup. Furthermore, in terms of Pb, there is the possibility of a difference 

due to variable contamination of the 2nd generation USGS geological powder RM (Woodhead and Hergt 2000, Weis 

et al. 2006, Kamber and Gladu 2009).   

Despite the few discrepancies between the two setups, all element differences are ≤15% and are consistently 

<10% within measurement uncertainty. Thus, both datasets are compiled into a global mean with its associated 

standard deviation (n=63; Table 1). A graphical comparison of the data from each setup is illustrated in Supplementary 

Figure 1, where both data sets with their respective standard deviation are normalized to the compiled mean. The 

compiled mean and 2s are the recommended informational values from this study and are used from Section 4.5 

onward unless noted otherwise. 

 

4.4 UT results for SLRS-6 test experiments at 10x dilution factor and detection limit barriers  

The SLRS-6 results determined with the UT Setup at a 10x dilution factor are reported in Supplementary Table 

6. Data are reported as a mean of 3 measurements (n=3) each of UT-01 to UT-06 and 4 measurements (n=4) of 

TCD-01 in separate respective experiments undertaken ca. 6 months apart. The standard deviation (2s, and 

equivalent %RSD) of the global mean of all samples (n=22; k=7) is used as an estimate of precision. The purpose of 

these data is to demonstrate the ability to retain coherent and repeatable results for most analytes at lower signal 

intensities (i.e. lower signal/background ratios). At this higher dilution factor, all analytes with the exception of Sn, 

Cd, and Ta remain above the detection limit criteria of 3x the BEC (Section 3.6). As expected, the precision 

decreases relative to primary 1.1x dilution factor analyses (Section 4.1). However, the precision is still <5% for 14 

elements, between 5-10% for 6 elements (Li, K, Zr, Mo, Sm, Th), between 10-15% for 10 elements (Mg, Cs, Eu, 

Gd, Tb, Dy, Ho, Tm, Yb), and only >15% for Be (28%), Nb (26%), Er (16%), Lu (22%), Hf (45%), and W (24%). 

Further, the mean abundances agree very well with the primary SLRS-6 compilation, with results differing by <3% 

for 27 elements, between 3-5% for 4 elements (Na, Sb, Tl, Pb), and >5% for K (9.5%), Be (11%), Nb (5.9%), and 

Th (12%), despite the decreased precision. A comparison of the compiled results at 1.1x and UT results at 10x 

dilution is available in Supplementary Figure 2. Note that Li is again excluded from the BEC filter. The coherence in 

SLRS-6 Li abundance at 1.1x and 10x dilution (<3% diff.), with the latter having a significantly increased relative 

contribution of internal standard impurity to the 7Li mass, further exemplifies the efficacy of the applied blank 

correction (Section 3.6). 

The 1.1x to 10x dilution comparison illustrates that for some of the lowest abundance trace elements (e.g. the 

HFSE) the method will not produce data as precise or at all (below detection) for very trace element depleted waters 

(i.e. in some cases pre-concentration may still be necessary to acquire data for all analytes). This is evident with 

detection limit barriers being reached for W and Ta for some of the low-abundance tributary samples and pond/lake 

samples in this study. However, very low full procedural blank levels still permit quantification of a full suite of 



 

REE+Y with sufficient precision at higher dilution factors. See Lawrence et al. (2006b) for REE+Y coherency tests 

at even higher dilution factors.  

4.5 Accuracy comparison to SLRS-6 certified and literature abundances  

The SLRS-6 data reported in Table 1 include 11 (Na, Mg, K, Ca, Sr, Mo, Cd, Sb, Ba, Pb, U) of 20 certified 

elements and 1 (Be) of 2 elements with reference values from NRC-CNRC. This allows an accuracy assessment for 

12 elements, which is done here using a %bias calculation (see Appendix A for details). Of this group, the bias is <5% 

for 9 elements (Na, Mg, K, Ca, Sr, Sb, Ba, Pb, U), between 5-10% for Be (9.2%) and Mo (-7.7%), and >10% for Cd 

(-12%). However, all of the elements with >5% bias still overlap within the expanded uncertainty (or 2s) of both data 

sets (Supplementary Figure 3). Moreover, it is noted that the uncertainty on the NRC-CNRC data for Cd and Be is 

significant at >20%.  

The accuracy of the remaining values provided in Table 1 is assessed against the recent SLRS-6 compilation of 

Yeghicheyan et al. (2019), which is reported in Table A1. The Yeghicheyan et al. (2019) data were compiled from at 

least 15 measurements of each analyte in 1 laboratory, but for many analytes typically from ≥120 measurements in 9 

laboratories. This %bias between the two studies is in Table A1 and a scatter plot is used to graphically compare the 

data (Figure 4). The bias is <5% for 26 elements, between 5-10% for Be (9.6%), Zr (5.9%), Eu (-7.9%), and Lu (-

8.3%), and >10% for Nb (-68%), Cd (-25%), Hf (-79%), W (-32%), Tl (-14%), and Th (23.5%). Notably, most of the 

REE+Y are highly consistent between both studies (bias <5%). The greater discrepancy for Eu is probably related to 

the various strategies of handling the BaO+ interference on the Eu+ analyte mass(es). The majority of analytes with a 

significant discrepancy are the very low abundance HFSE (Hf, Nb, Th, W). However, it is noted that the Yeghicheyan 

et al. (2019) HFSE data compilation is from fewer measurements and laboratories (in some cases only 1) relative to 

other analytes. A more detailed comparison of the HFSE and REE+Y between different data sets is considered in 

Sections 4.6.1-4.6.3. 
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4.6 Ottawa River basin field samples and comparison to the SLRS CRM series  

The ultra-trace element data for the Ottawa River samples, selected tributaries, and ponds/lakes are reported in 

Table 2, Table 3, and Supplementary Table 7, respectively. The pond/lake data are secondary to the study and not 

considered further in the results and discussion. All elements measured in the 14 new Ottawa River samples and the 

4 tributaries (Mattawa, Petawawa, Noire, Coulonge) are compared to SLRS-6 in terms of relative abundance 

(percent difference) in Figure 5. The Ottawa River samples are displayed using a box and whisker plot (Figure 5a) 

that provides a visual illustration of downstream element behaviour. Tight data dispersion (e.g. K, Sr, Ba) elucidate 

elements with conservative downstream behaviour, whereas the widest dispersion elucidates elements with the 

highest downstream modification (e.g. Zr, Nb, Ta, Hf, Th). Within the 14 Ottawa River samples, 1 (KLR01) is 

significantly higher in most trace elements. However, the median and mean abundances of most trace elements are 

within ± 25% of SLRS-6 with the notable exceptions of Sr, Sn, Sb, Ba, and Pb, with mean relative abundances (±2s) 



 

of -39 ± 9%, 849 ± 1705 %, -81 ± 5%, -31 ± 15%, and -67 ± 28%. The higher Sr and Ba in SLRS-6 relative to the 

upstream samples of this study probably reflects the additional source of these elements from Paleozoic sedimentary 

rocks in the southern ORB (Figures 1 and 2). This is consistent with the higher major element abundances in SLRS-

6 (chiefly Na, Ca, and Mg) and previous observations of increasing carbonate weathering flux in the southern ORB 

(Telmer 1997, Telmer and Veizer 1999). Similarly, the higher Sb and Pb in SLRS-6 could point to increasing 

anthropogenic inputs in the more populated areas of the southern ORB. Alternatively, some of these elements could 

have been added during handling of the SRM before distribution. Tin has significantly higher abundance and 

variability in the new Ottawa River samples relative to SLRS-6. The latter trends appear to reflect some combination 

of the low natural Sn abundance, higher uncertainty on the analytical measurements in SLRS-6 (23%), and 

potentially other analytical biases, such as filtration and handling blank differences or undetected bias from 

analytical interferences. The mean element abundances of each tributary show an expectedly greater difference 

relative to SLRS-6 (Figure 5b), which includes, in general, lower trace element abundances, apart from the REE+Y. 

Of the full element list produced for SLRS-6 and the ORB samples, the remaining results and discussion focus 

on the REE+Y and HFSE (Zr-Hf-Nb-Ta-Th-U-Mo-W). Abundances are all reported as a mass fraction (in pg g-1) 

and element ratios are mass/mass. Mean element ratios are calculated from individual measurements when possible 

or otherwise calculated from the reported mean abundance in a literature source. All uncertainties on calculated 

means are expressed as 2s.  
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4.6.1. REE+Y 

The total abundance of the REE (ΣREE) is expressed as the sum of all lanthanide abundances from La-Lu. The 

REE+Y data of waters are typically evaluated normalized to an upper continental crust composite, providing a baseline 

to evaluate bulk REE+Y fractionation in terms of pattern enrichment or depletion relative to the crust and determine 

anomalous element behaviour. Normalization is performed here using the alluvial sediment composite ‘Mud from 

Queensland’ (MuQ) (Kamber et al. 2005). Normalized ratios are reported as REEn/REEn and REE anomalies 

(Lan/Lan*, Cen/Cen*, Eun/Eun*, Gdn/Gdn*) are defined as departures from a smooth inter-element pattern on MuQ-

normalized log-linear REE+Y plots. The REEn* values are calculated using a geometric mean, where Lan* = Prn x 

(Prn/Ndn)2, Cen* = Prn x (Prn/Ndn), Eun* = (Smn
2 x Tbn)1/3, Gdn* = (Tbn

2 x Smn)1/3 (Lawrence et al. 2006c, Lawrence 

and Kamber 2006). The Y anomaly is instead considered in terms of the Y/Ho mass ratio.  

Normalized REE+Y plots of SLRS-6 data from this study, Schmidt et al. (2019), and Yeghicheyan et al. (2019) 

are reported in Figure 6a. The REE+Y patterns of all data sets overlap within uncertainty, but show slightly more 

deviation in the HREE relative the LREE. It is noted that the ‘smoothness’ of the non-anomalous (or potentially non-

anomalous) elements in the normalized pattern (i.e. excluding La, Ce, Eu, Gd, Y, Lu) also attests to the quality of the 

data and accuracy of inter-element REE ratios (Lawrence and Kamber 2006). A comparison of SLRS-6 REE+Y 

patterns to those of SLRS-5 (Yeghicheyan et al. 2013) and SLRS-4 (Lawrence et al. 2006a) is presented in Figure 6b. 

Despite changes in the ΣREE between each of these SLRS CRM generations, with SLRS-4>SLRS-6>SLRS-5, the 



 

shape of the normalized REE+Y patterns are nearly parallel. The inter-generation pattern similarity is also evident 

through Prn/Ybn ratios, with SLRS-6 (2.09 ± 0.04) being similar to those of SLRS-5 (1.86) and SLRS-4 (2.36). All 

three generations also share similar REE+Y anomalies. For example, the Cen/Cen* value of SLRS-6 from this study 

(0.575 ± 0.011) is identical to that from Yeghicheyan et al. (2019) and matches well with the calculated values of 0.62 

and 0.59 from SLRS-5 and SLRS-4, respectively. Similarly, the Y/Ho ratio from this study (30.29 ± 0.76) is similar 

to the ratio of the SLRS-6 (29.8), SLRS-5 (30.3), and only slightly higher than SLRS-4 (28.0).  

One exception to REE+Y similarity between the latest 3 SLRS generations is a positive Sm anomaly observed 

only in SLRS-4 (Figure 5b), as previously documented across several independent studies (Yeghicheyan et al. 2001, 

Lawrence et al. 2006a, Lawrence and Kamber 2007). Yeghicheyan et al. (2013) attributed this Sm over-abundance to 

uncorrected interferences on the Sm analyte mass. However, there are not many documented polyatomic or doubly-

charged interferences on the most common Sm analyte masses (149 in this study). Lawrence and Kamber (2007) 

instead advocated for a contamination origin, noting that other NRC-CNRC natural water CRM (i.e. SLEW, CASS, 

NASS) contained a similar Sm over-abundance that was reproducible in different laboratories and across different 

generations of these CRM. Thus, although anthropogenic Sm anomalies linked to industrial waste have been 

documented in river waters (Kulaksız and Bau 2013), the lack of a Sm anomaly in the later generation SLRS-5 and 

SLRS-6 CRM appears to converge on Sm having been contaminated only for SLRS-4 in this CRM series, at some 

point during or after field sampling and before bottling and distribution. The new ORB samples from this study are 

also devoid of Sm anomalies, yet show highly similar REE+Y patterns to the SLRS CRM (Figures 6 and 7; see below). 

Collectively, these new Ottawa River observations strengthen the case for a highly selective Sm contamination that is 

restricted to older generation NRC-CNRC natural water CRM. 
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The ΣREE of the 14 T-C transect samples taken from the Ottawa River (921-1610; mean: 1156 ± 393) scatter 

closely to that of SLRS-6 (ΣREE of 973 ± 5), although there is a broadly defined downstream decrease in abundance 

(Figure 8). All of the T-C transect samples show highly similar REE+Y patterns to the SLRS CRM (Figure 6c), which 

is expressed visually by mathematically scaling the T-C transect sample ΣREE equivalent to be equivalent to that of 

SLRS-6 (Figure 6d). Further, the Ottawa River samples have similar Prn/Ybn ratios, with T-C samples ranging from 

1.95-2.23 (mean: 2.11 ± 0.17) and overlapping that of SLRS-6 (2.09 ± 0.04). Inter-sample REE+Y variability is largely 

restricted to Eu and Ce anomalies, and to a lesser extent, Y anomalies (Figure 6d and Figure 8). Both Eun/Eun* and 

Cen/Cen* values have true anomalies that decrease gradually downstream along the T-C transect with a range of 0.974-

0.853 and 0.715-0.545, respectively, that end near to the SLRS-6 values (Eun/Eun*: 0.854 ± 0.022; Cen/Cen*: 0.575 ± 

0.011). The Lan/Lan* values (0.991-1.034; mean: 1.015 ± 0.024) along the T-C transect scatter close to the SLRS-6 

value (1.024 ± 0.033), but do not reveal the development of an anomaly or a downstream trend. The Gdn/Gdn* values 

(1.050-1.098; mean: 1.072 ± 0.027) scatters close to the SLRS-6 value (1.073 ± 0.028) with all revealing small positive 

anomaly development, but no defined downstream trend. The Y/Ho ratios along the T-C transect (28.26-29.79; mean: 

29.07 ± 0.76) reveal a small positive Y anomaly without any downstream trends, but are slightly lower than in SLRS-



 

6 (30.29 ± 0.76). The 4 tributaries have more variable REE abundances, normalized REE+Y pattern slopes, and REE 

anomalies relative to each other and the Ottawa River samples (Figure 7), including reaching lower Ce anomalies 

(Petawawa Cen/Cen*: 0.443-0.477), lower Eu anomalies (Petawawa Eun/Eun*: 0.720-0.733), more positive Gd 

anomalies (all tributaries Gdn/Gdn*: 1.08-1.12) and steeper, more LREE-enriched normalized REE+Y patterns 

(Colounge Prn/Ybn: 2.867-2.875). With the exception of the 2 Mattawa River samples, there is generally a high degree 

of consistency in REE characteristics within each tributary (Figure 8).  
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4.6.2. Zr-Hf and Nb-Ta 

The Zr abundance of SLRS-6 from this study (65.8 ± 1.6) overlaps with the abundance from Yeghicheyan et al. 

(2019) (62 ± 11). From previous SLRS generations, reported abundances of Zr were 30 ± 7 (Yeghicheyan et al. 2019), 

20 ±30 (Yeghicheyan et al. 2013), and 35.7 ± 3.4 (Hoang et al. 2019) for SLRS-5 and 61.8 in SLRS-3 (Firdaus et al. 

2008). The Hf abundance of SLRS-6 from this study (2.00 ± 0.06) is significantly lower than the abundance from 

Yeghicheyan et al. (2019) (9.5 ± 0.4). From previous SLRS generations, reported abundances of Hf were 1.12 ± 0.20 

in SLRS-5 (Hoang et al. 2019) and 0.87 in SLRS-3 (Firdaus et al. 2008). The Zr/Hf ratio of SLRS-6 in this study 

(32.84 ± 1.07) differs substantially from that of Yeghicheyan et al. (2019) (6.5), but overlaps within uncertainty of the 

ratio for SLRS-5 (31.88) from Hoang et al. (2019) despite the lower SLRS-5 Zr-Hf abundances. The Zr/Hf ratio of 

SLRS-3 from Firdaus et al. (2008) is higher at ~71. Notably, the Zr/Hf ratios reported for SLRS-5 and SLRS-6 are 

within the range expected for upper crustal rocks and were reproducible in the newly collected Ottawa River samples 

(see below). Collectively, these observations suggest that the lower Hf abundance for SLRS-6 reported here is more 

accurate than that of Yeghicheyan et al. (2019), but further independent tests are needed. The new Ottawa River 

samples of the T-C transect have a relatively consistent Zr/Hf ratio (32.46 ± 5.07) that appears to show some deviation 

towards lower ratios in the samples furthest downstream (SBB01, PDF01 with 26.86-28.74) (Figure 9). Across the 

transect, the Zr and Hf abundances show a tightly coupled downstream depletion. The Zr and Hf abundances of the 4 

tributaries are lower than in the Ottawa River samples, and Zr/Hf ratios are relatively consistent within each tributary 

and between each other, but significantly lower than the Ottawa River with a mean of all 11 samples at 19.19 ± 3.21 

(Figure 9).  

The Nb abundance of SLRS-6 from this study (2.60 ± 0.10) is significantly lower than that reported by 

Yeghicheyan et al. (2019) (8.1 ± 5.7), albeit still within their uncertainty. From previous SLRS generations, reported 

abundances of Nb were 6.5 ± 4.8 (Yeghicheyan et al. 2019), 3.6 ± 1.6 (Yeghicheyan et al. 2013), 3.8 ± 0.6 (Heimburger 

et al. 2013), 3.70 ± 0.20 (Hoang et al. 2019), and 2.8 (Filella et al. 2014) for SLRS-5, 3.89 ± 0.26 (Filella and 

Rodushkin 2018) for SLRS-4, and 2.9 (Firdaus et al. 2008) for SLRS-3. There are no other SLRS-6 Ta data available 

at present for a comparison to the abundance of 0.060 ± 0.008 reported here. From previous SLRS generations, 

reported abundances of Ta were 0.062 ± 0.010 (Hoang et al. 2019) in SLRS-5, 0.15 ± 0.03 (Filella and Rodushkin 

2018) in SLRS-4, and 0.25 (Firdaus et al. 2008) in SLRS-3. The SLRS-6 Nb/Ta of 43.4 ± 5.5 from this study is lower 

than in SLRS-5 (59.7), but higher than in SLRS-4 (26.4 ± 5.9) or SLRS-3 (11.4), based on the aforementioned studies. 



 

The new Ottawa River samples of the T-C transect show a spread in Nb/Ta ratios from 20.0-30.5 with a gradual 

downstream increase (Figure 9). Across the transect, Nb and Ta abundances decrease progressively downstream 

similar to Zr-Hf. The Nb and Ta abundances of the 4 tributaries are lower than in the Ottawa River samples and are 

generally shifted towards higher Nb/Ta ratios (29.3-45.2) that scatter near the value in SLRS-6 (Figure 9). The lower 

Ta abundances of the tributaries were closer to the detection limit than the Ottawa River, and in the case of the 

Petawawa River and ponds/lakes (Supplementary Table 7) the samples were below the detection limit filter. The 

determination of Ta in natural waters is notoriously challenging even with carefully controlled blanks and care to 

minimize instrumental memory effects (Filella and Rodushkin 2018). Further work using different analytical strategies 

to better constrain Ta (and other low-solubility, low-abundance HFSE) in SLRS-6 and other natural water CRM is 

clearly needed. Nevertheless, the method outlined herein has excellent Ta accuracy for rock RM, and a good 

repeatability of SLRS-6 Ta abundances and Nb/Ta ratios was found across two separate facilities (Table 1). The new 

Ottawa River samples have Ta abundances at or above that in SLRS-6 such that the Nb-Ta uncertainty for SLRS-6 

should provide a reasonable estimate for these samples. This is not the case for the tributary samples, where precision 

is poorer at lower analyte levels and the lower signal/blank ratios can account for more of the Nb/Ta scatter.  

 

[FIG. 9 APPROXIMATELY HERE] 

4.6.3. Mo-W and Th-U 

The Mo abundance of SLRS-6 from this study (198.4 ± 5.5) overlaps with the abundance of Yeghicheyan et al. 

(2019) (196 ± 18). From previous SLRS generations, reported abundances of Mo were 209 ± 15 (Yeghicheyan et al. 

2019), 220 ± 10 (Yeghicheyan et al. 2013), and 227 ± 8 (Hoang et al. 2019) for SLRS-5 and 201 (Firdaus et al. 2008) 

for SLRS-3. Notably, these measurements all closely approach the certified NRC-CNRC Mo abundances for the 

different generations. The W abundance of SLRS-6 from this study (11.24 ± 0.25) is significantly lower than in 

Yeghicheyan et al. (2019) (16.5 ± 0.4). From previous SLRS generations, reported abundances of W were 10 ± 3 

(Yeghicheyan et al. 2019) and 14 ± 18 (Yeghicheyan et al. 2013) for SLRS-5 and 4 (Firdaus et al. 2008) for SLRS-3. 

The Mo/W ratio in SLRS-6 determined in this study (17.65 ± 0.62) is higher than the ratio from Yeghicheyan et al. 

(2019) (12). The SLRS-5 Mo/W ratios are only slightly higher at 20-21 and the SLRS-3 ratio is higher at 50, based 

on the aforementioned studies. The new Ottawa River samples of the T-C transect show a range of Mo/W ratios 

(11.97-23.46; mean: 17.77 ± 7.50) that scatter around the SLRS-6 value. Spatially, the Mo/W decreases gradually 

downstream from the uppermost Timiscaming samples (TMU01, TMD01, TML01) to the 3 samples near Rolphton 

(RJR01, RJR02, and RJL01) at which point the remaining downstream samples switch to gradually increasing Mo/W. 

The tributary samples all have lower Mo-W abundances and higher Mo/W ratios (ranging from 43.63-74.52) relative 

to the Ottawa River samples.   

The Th abundance of SLRS-6 from this study (19.8 ± 2.7) overlaps within uncertainty with the abundance of 

Yeghicheyan et al. (2019) (16 ± 7). From previous SLRS generations, reported abundances of Th were 4.5 ± 5.4 

(Yeghicheyan et al. 2019), 13.6 ± 3.3 (Yeghicheyan et al. 2013), and 14.6 ± 0.4 (Hoang et al. 2019) for SLRS-5. The 

U abundance of SLRS-6 from this study (70.4 ± 1.4) overlaps within uncertainty with the abundance of Yeghicheyan 



 

et al. (2019) (67 ± 3). From previous SLRS generations, reported abundances of U were 91 ± 12 (Yeghicheyan et al. 

2019), 93 ± 15 (Yeghicheyan et al. 2013), and 93.9 ± 2.2 (Hoang et al. 2019) for SLRS-5. Notably, these measurements 

all closely approach the certified NRC-CNRC U abundances for the 2 SLRS generations. The Th/U ratio for SLRS-6 

from this study (0.28 ± 0.04) is similar to the ratio from Yeghicheyan et al. (2019) (0.23 ± 0.16), but both are higher 

than the range of ratios for SLRS-5 (0.05-0.16) based on the aforementioned studies. The new Ottawa River samples 

of the T-C transect have Th/U ratios similar to SLRS-6, ranging from 0.17-0.37 (mean: 0.28 ± 0.15), with a broad 

downstream decrease (Figure 9). The Th/U ratios of the Mattawa River (0.41-0.22) and Petawawa River (0.30-0.41) 

tributaries are near to or slightly higher than the Ottawa River, whereas those of the Rivière Noire (0.74-0.94) and 

Rivière Coulonge (0.77-0.85) tributaries are significantly higher.  

5. Discussion 

5.1. Filtration, preservation, and storage effects on sample chemistry 

The ORB samples from this study were filtered to 0.45 µm compared to the 0.2 µm used for the NRC-CNRC 

SLRS series CRM. The filtration difference could produce an abundance bias through colloids or particulates between 

the filter membrane sizes; however, a high degree of consistency in the chemistry between the new Ottawa River 

samples and SLRS-6 was observed (Section 4.6, Figure 5). Importantly, this includes no major offsets in the relative 

REE+Y patterns (Figure 6), consistent with the findings of Lawrence et al. (2006b), or in HFSE ratios (Nb/Ta, Zr/Hf, 

Nb/Ta, Th/U, Mo/W). Thus, even with some abundance bias possible (most prominently for the low-solubility Nb-

Ta-Zr-Hf-Th with a greater affinity for colloids), inter-element ratios appear coherent and, accordingly, any influences 

from the filtration difference are considered negligible relative to other analytical effects or natural processes in the 

catchment. Modification of the new ORB sample chemistry after filtration and before acidification and measurement 

can also be ruled out on similar grounds, and is constent with the lack of visual change to the sample solutions during 

this timeframe. Conversely, the consistency observed points to minimal contamination of the studied elements during 

the handling of the SLRS-6 CRM before distribution (note the potential exception of Pb, Ba, and Sb; Section 4.6).  

Several laboratories retain bottles of SLRS CRM for QA/QC beyond their official shelf-life period (SLRS-6 due 

to expire in September 2020). The close match in chemistry between SLRS-6 and the new samples from this study 

also demonstrates that the REE+Y and HFSE signatures appear to be retained in the CRM containers throughout the 

existing SLRS-6 shelf-life (ca. 4-5 years). Further, no gradual signal loss was noted across the longer measurement 

timeframe (~30 months) of the single SLRS-6 bottle (UT-01) using the TCD Setup. The modification of sparingly 

soluble HFSE (Zr, Hf, Nb, Ta, Th) abundances in nitric acid solutions over longer time periods is possible, but there 

are insufficient data to quantify this at present. One potential exception is Th. The SLRS-5 Th abundances and Th/U 

ratios reported in Yeghicheyan et al. (2019) are lower and less precise in comparison to the earlier Yeghicheyan et al. 

(2013) study, yet U abundances were similar. These observations suggest variable removal of Th but not U from the 

SLRS-5 CRM solution (e.g. via adsorption to container walls) during the longer aging period of the bottles between 

the latter studies. It is also noted that the high variability of Ta across different SLRS CRM series could encompass 

similar Ta removal in distributed bottles over time, but this can’t be separated from analytical or natural effects with 

existing information. 



 

5.2. REE+Y pattern implications for element sourcing, riverine fractionation, and long-term catchment flux 

consistency 

The “dissolved” REE+Y are affiliated primarily with the colloidal fraction of river and ground waters (Ingri et 

al. 2000, Andersson et al. 2006, Pourret et al. 2009, Pokrovsky et al. 2010) and normalized REE+Y patterns of this 

load are variably fractionated relative to presumed rock sources and bed and suspended loads (Sholkovitz 1995). 

Following release into the hydrosphere, aqueous REE+Y geochemistry is controlled by REE-complexation and the 

extent of colloid interaction with particulates, which is in turn driven by numerous physicochemical parameters such 

as pH, redox state, and dissolved organic matter content. As such, pH and ionic strength are informative first proxies 

for monitoring conditions that favour particulate coagulation and enhanced REE+Y removal (Elderfield et al. 1990, 

Sholkovitz 1995, Johannesson et al. 2006, Lawrence and Kamber 2006, Pourret and Tuduri 2017) or the pH-dependent 

stability of REE-complexes (Millero 1992, Johannesson et al. 1995, Quinn et al. 2006, Noack et al. 2014). Dissolved 

REE abundances and REE+Y patterns in an individual catchment are also amenable to seasonal changes inducing 

variable runoff and water-rock interaction and ligand chemistry (Dia et al. 2000, Hagedorn et al. 2011, Gill et al. 

2018). 

Across the Ottawa River T-C transect, the full range in ΣREE is equivalent to a 43% change in concentration, 

indicating downstream REE+Y removal processes and/or dilution effects. However, no clear correlation of the Ottawa 

River ΣREE with field parameters (e.g. pH, Eh) is evident, making it difficult to elucidate colloid-particulate controls 

relative to dilution and mixing effects from tributaries. Nevertheless, all samples show a coherent REE+Y pattern 

(excluding minor changes in Ce and Eu) indicating that ΣREE changes occur with only minor inter-element 

fractionation, echoing earlier studies showing downstream REE+Y pattern consistency (Lawrence et al. 2006b). Short-

term seasonal changes in REE chemistry of the ORB is untestable in this study due to the limited sampling period. 

However, the new Ottawa River observations coupled with the SLRS CRM series data illustrate that the primary 

REE+Y pattern characteristics of the Ottawa River (LREE>HREE enrichment, deep negative Ce anomaly, minor 

negative Eu anomaly, minor positive Gd and Y anomalies) are retained over a decadal timescale (SLRS-3/-4 CRM 

sampled in the 1990s). Further, the similar observations from 4 tributaries of the Ottawa River demonstrate that these 

REE+Y characteristics are a wider feature of the ORB with only minor localized changes in REE+Y patterns (e.g. 

slightly greater LREE/HREE enrichment, magnitude of Ce anomaly). Remaining focus is on outlining potential 

weathering, source rock, and riverine effects on the main features of the primary normalized REE+Y pattern in the 

ORB.  

The minor positive Gd and Y anomalies in the Ottawa River are generated upstream of the central ORB and 

appear to be natural features. Gadolinium anomalies have been linked to hospital effluents (e.g. Bau and Dulski 1996, 

Elbaz-Poulichet et al. 2002, Kulaksız and Bau 2013, Lerat-Hardy et al. 2019), but the minor positive anomalies of the 

ORB are consistent throughout a wide stretch of the Ottawa River (from the uppermost T-C transect to the sampling 

point of SLRS-6 outside of Ottawa) and present in tributaries that are not downstream of any anthropogenic sources. 

The ORB Gdn/Gdn* values are also within the range of those from streams in South East Queensland that were 

interpreted to be natural positive anomalies by Lawrence et al. (2006b). Both of these catchments apparently have 

processes in operation favouring preferential Gd release and/or complexed aqueous stability, but which remain poorly 



 

understood. Similarly, the minor Y anomalies cannot be readily attributed to a source of marine carbonate (Ryan et 

al. 2018), with only minor inliers of Paleozoic carbonate present upstream, or marine phosphate-bearing agricultural 

fertilizer (Lawrence et al. 2006b, Marx et al. 2010, Kechiched et al. 2020). A potential exception may be revealed 

through the chemistry of the SLRS-5 and SLRS-6 CRM, which were sampled downstream of the aforementioned 

sources and have slightly higher Y/Ho ratios than SLRS-3/-4 and the new upstream ORB samples. The minor positive 

Y anomalies throughout the remaining ORB are also in line with observations from other rivers (Lawrence et al. 

2006b, Leybourne and Johannesson 2008). In these cases, the anomalies are likely inherited from chemical weathering 

processes, where the release of fluids from weathering profiles with Y/Ho ratios greater than the source rock has been 

attributed to preferential Ho scavenging by (oxy)(hydr)oxides (Thompson et al. 2013, Babechuk et al. 2015), similar 

to observations from marine environments (Bau 1999, Bau and Koschinsky 2009). 

Riverine Ce anomalies are widely accepted to record oxidative processes in soils and shallow groundwater that 

involve oxidation of Ce(III) to Ce(IV) and its preferential scavenging on soil or bedrock fracture Fe-Mn 

(oxy)(hydr)oxides (De Carlo et al. 1997, Laveuf and Cornu 2009, Pédrot et al. 2015, Yu et al. 2017). The 

Cen/Cen*values in the ORB rivers (0.443-0.715; mean of 0.567 ± 0.135) are very low and present in the upstream 

samples, indicating that preferential solid-phase Ce(IV)>REE(III) retention begins early in the catchment REE+Y 

cycle. Efficient oxidative Ce(IV) scavenging can be inferred during weathering, possibly amplified by repeated Fe-

Mn (oxy)(hydr)oxide precipitation-dissolution cycles (Yu et al. 2017), a greater controlling role of (oxy)(hydr)oxides 

relative to soil organic matter (Pédrot et al. 2015), or the chemical resistance of Ce(IV)-bearing minerals (e.g. zircon) 

relative to other REE-bearing accessory minerals (e.g. apatite) in felsic bedrock (Fu et al. 2019). Independent of the 

initially negative Ce anomaly, the downstream decrease in Cen/Cen* along the Ottawa River transect and variable 

Cen/Cen* in tributaries point to riverine processes modifying Ce anomalies. Strong positive correlations of Cen/Cen* 

with HFSE (i.e. Zr, Hf, Nb, Ta, Th) abundances are apparent across all ORB samples, suggesting either progressive 

mixing with tributary waters characterized by lower HFSE/more negative Ce anomalies downstream in the Ottawa 

River or that the removal of colloidal HFSE and REE+Y favours Ce(IV)>REE(III). Similar riverine effects may also 

account for the increasingly negative Eun/Eun* moving downstream. 

 Streams inherit the REE+Y signatures of rocks in their host catchment to varying extents even amidst the 

complex processes that can shape freshwater REE+Y patterns along the continuum from weathering profile to water 

(Biddau et al. 2002, Lawrence et al. 2006c, Sklyarova et al. 2017). In this regard, the extreme LREE>HREE enriched 

normalized REE+Y patterns from the ORB (mean Prn/Ybn of 2.23 ± 0.62) are atypical relative to most river waters. 

The normalized REE+Y patterns of most major rivers are flatter to slightly LREE-depleted, reflecting a closer 

geochemical similarity to the average upper continental crust and the tendency for LREE>HREE removal from the 

dissolved load (Elderfield et al. 1990). To illustrate this, the ORB Prn/Ybn ratios are compared to the world river 

compilation of Gaillardet et al. (2014) (Figure 10) with a mean of 1.11 ± 1.24 (n=17, from samples with both Pr and 

Yb data excluding the Ottawa River). Accordingly, the ORB river waters appear to inherit a disproportionate supply 

of REE+Y from the highly LREE>HREE enriched felsic plutonic and metamorphic rocks in the catchment (Feng and 

Kerrich 1992). The REE+Y supply to ORB waters could be driven by the preferential dissolution of LREE-enriched 

accessory minerals (Harlavan and Erel 2002). However, the chemical weathering of coarse-grained intermediate-felsic 



 

rocks tends to result in the accumulation of LREE>HREE in weathering residues even after considering the complex 

controls from protolith accessory mineralogy, adsorption capacity of pedogenic mineralogy, and profile maturity 

(Nesbitt and Markovics 1997, Aubert et al. 2001, Yusoff et al. 2013, Fu et al. 2019). Thus, the geologic imprint from 

the bedrock likely overwhelms weathering or riverine effects on the REE+Y patterns in the ORB waters. Additional 

support for this comes from testing normalization of the waters to potential LREE>HREE-enriched source rocks in 

the upper ORB (Feng and Kerrich 1992), which flattens the REE+Y patterns (Biddau et al. 2002). The imprint of the 

silicate rock-dominated REE+Y signature in the ORB is retained downstream of the Champlain Sea sediments and 

other Paleozoic sedimentary rocks (i.e. southern most samples of this study and SLRS-5/-6 sampling area). 

The propensity for geologic signatures to be retained across a major river catchment is relevant to deciphering 

variations in different shallow marine waters inferred to have a strong continental REE+Y source inheritance (e.g. 

Molina-Kescher et al. 2018). Similarly, these observations are relevant to REE+Y hydrosphere cycling on the 

Archean-Proterozoic Earth surface where a dominating continental solute budget is recorded in near-shore 

sedimentary deposits (Alexander et al. 2008). For example, highly LREE-enriched REE+Y patterns comparable to the 

ORB waters were documented in marine stromatolites of a restricted ca. 2.82 Ga epi-continental basin, and interpreted 

by Kamber et al. (2004) to reflect highly localized terrestrial REE+Y input from tonalitic gneisses.  

 

[FIG. 10 APPROXIMATELY HERE] 

5.3. Terrestrial fractionation of Zr/Hf and Nb/Ta 

Significant Zr-Hf fractionation and a general trend towards superchondritic Zr/Hf ratios is evident across rivers 

of variable ionic strength, pH, and Eh (Godfrey et al. 1996, Inguaggiato et al. 2015, Zuddas et al. 2017, Censi et al. 

2018, Zuddas et al. 2018). Ionic strength and the composition of colloids appear to play major roles in Zr-Hf cycling 

within the dissolved load of rivers (Censi et al. 2018). Both Zr and Hf are predicted to occur primarily as M(OH)5
- 

with minor M(OH)4
0 hydroxyl species (Turner et al. 1981, Byrne 2002) in near-neutral waters, with Hf>Zr adsorption 

to positively charged (oxy)(hydr)oxide surfaces seemingly a key process generating superchondritic Zr/Hf in both 

terrestrial and marine environments (Godfrey et al. 1996, Firdaus et al. 2008, Firdaus et al. 2011, Schmidt et al. 2014, 

Censi et al. 2018, Zuddas et al. 2018).  

The Zr/Hf ratios of SLRS-6 and the Ottawa River T-C transect scatter within the range of upper crustal rocks 

despite the downstream decrease in Zr-Hf abundances. The elements are transferred from their crustal source into the 

dissolved load (assumedly affiliated with colloids) and transported in the Ottawa River without significant 

fractionation. The indistinguishable Zr/Hf ratio of SLRS-6 from the T-C transect also suggests the inherited crustal 

signature is consistent across different levels of filtration (<0.45 µm for this study, <0.2 µm for SLRS-6) and carried 

to the southernmost ORB. This could imply a limited chemical reactivity with riverine particulates and physical colloid 

removal (e.g. colloid aggregation), as suggested by Godfrey et al. (2008) for low salinity samples of a Hudson River 

estuary transect. In contrast to the Ottawa River, the subcrustal Zr/Hf ratios of the 4 ORB tributaries indicate 

preferential Hf>Zr transfer into the dissolved load via weathering or some colloid-particulate interaction that favours 

Hf>Zr aqueous stability. This direction of fractionation is similar to a subset of low ionic strength waters studied by 



 

Censi et al. (2018) and highly acidic waters studied by Inguaggiato et al. (2015). In contrast to these studies, assessing 

the role of specific ligands or colloid types was not a focus here. Nevertheless, it is noted that independent of the 

different Zr/Hf signatures in ORB tributaries (with lower Zr-Hf abundances) they must ultimately be overwhelmed 

by the signature of the trunk Ottawa River downstream. There are no Zr-Hf data available to trace the coupled pathway 

of these elements further into the St. Lawrence River and St. Lawrence estuary, but Gobeil et al. (2005) provide 

evidence that the natural Zr flux from the wider Great Lakes catchment is retained with negligible anthropogenic 

modification in the St. Lawrence River downstream of Montreal.  

A comparison of the ORB Zr-Hf geochemistry to seawater and other freshwater is presented in Figure 11. In 

general, river waters have overlapping or higher Zr abundances than deep seawater but more limited Zr/Hf 

fractionation from crustal values. While the new results from this study do not provide new details on specific 

mechanisms of terrestrial Zr/Hf fractionation, they emphasize the importance of varying Zr/Hf signatures across rivers 

with differing chemistry and catchment geology. Specifically, the close overlap of the ORB waters with those of 

Godfrey et al. (1996) and Godfrey et al. (2008) suggest riverine fluxes from silicate-dominated catchments with low 

ionic strength may be prone to have minimally fractionated Zr/Hf (relative to crustal rocks) compared to higher ionic 

strength catchments dominated by carbonates and evaporites (Zuddas et al. 2017, Censi et al. 2018, Zuddas et al. 

2018). The study of Tepe and Bau (2014) demonstrated that enhanced fine particulate and colloid input to rivers could 

play a dominating role in the dissolved (<0.45 µm) input to local marine waters. It is likely a combination of dissolved 

riverine fluxes with varying Zr-Hf abundances and Zr/Hf ratios, Zr-Hf released from atmospheric dust particles (Censi 

et al. 2019), and coastal sediment Zr-Hf cycling that contribute to the significant Zr/Hf variability observed in shallow 

ocean waters (Firdaus et al. 2011, Niu 2012) and thus further work in each area is still needed.  

Insight into the Nb-Ta geochemistry of rivers is restricted to a handful of data (Filella 2017, Filella and Rodushkin 

2018). Most Nb/Ta studies on seawater to date draw a constraint for riverine Nb/Ta ratios from Firdaus et al. (2008) 

based on only SLRS-3 data (Nb: 2.9; Ta: 0.25; Nb/Ta: 11.4) and the Uji River (Nb: 7.0; Ta: 0.69; Nb/Ta: 10.1). 

However, as illustrated in Section 4.6.2, even the SLRS series CRM Nb/Ta ratios are poorly constrained with highly 

variable inter-study results. As such, the Nb-Ta geochemistry of rivers and specific controls of certain ligands or 

colloid types across different compositions of water is largely unconstrained compared to Zr-Hf. Both Nb and Ta are 

predicted to occur primarily as M(OH)5
0 hydroxyl species in near-neutral waters (Turner et al. 1981, Byrne 2002, 

Koschinsky and Hein 2003). To explain oceanic Nb/Ta fractionation, Schmidt et al. (2014) suggested that the greater 

stability of hydrolyzed Nb relative to Ta contributes to generating supercrustal ratios.  

The Nb/Ta ratios of SLRS-6 and the Ottawa River T-C transect are consistently supercrustal and increase 

downstream with decreasing Nb-Ta abundances. Both observations are surprising and contrast with Zr-Hf in 

illustrating Ta>Nb removal throughout the catchment. This is also surprising in view of available data indicating that 

Nb/Ta fractionation is more subdued relative to Zr/Hf in the oceans (Firdaus et al. 2011, Firdaus et al. 2018). A 

coupling of Nb/Ta with changes in HFSE abundances and Cen/Cen* provides supporting evidence that fractionation 

is likely tied in some way to colloid removal process in the ORB, but further detail on mechanisms is not speculated 

on here.  



 

A comparison of ORB Nb-Ta geochemistry to seawater and other freshwater is presented in Figure 11. 

Freshwaters are generally higher in Nb abundance than shallow and deep seawater, and earlier observations suggested 

near-crustal Nb/Ta ratios dominate in rivers, implying that most Nb/Ta fractionation occurs in shallow seawater. 

However, the new ORB data from this study and the recently published Nb/Ta ratio for SLRS-4 (26.4 ± 5.9) from 

Filella and Rodushkin (2018) overlap with part of the supercrustal Nb/Ta range observed for seawater. Thus, the 

results of this study tentatively suggest that the very low budget of dissolved (colloidal) Nb-Ta transferred to the 

hydrosphere begins to fractionate in some terrestrial systems prior to the oceans. Negligible Nb/Ta fractionation has 

been reported for the residual Nb-Ta in a saprolitic weathering profile (Babechuk et al. 2015), but, overall, most steps 

in the source-to-sink aqueous Nb-Ta cycle are very poorly understood. Better constraints on riverine Nb-Ta 

fractionation and effects associated with coastal colloid-particulate processes and remineralization are needed to 

derive a more complete understanding of oceanic values and the potential utility of Nb/Ta ratios as a marine 

biogeochemical tracer (Firdaus et al. 2011, Firdaus et al. 2018). 
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5.4. Terrestrial fractionation of Th/U and Mo/W 

Transport of dissolved U in oxygenated and near-neutral aqueous systems is primarily related to the oxidation of 

U(IV) to U(VI) and its solubilization as the uranyl cation (UO2
2+) or a uranyl complex (e.g. UO2(CO3)2

2-) and 

potentially aided by complexation with organic ligands (Halbach et al. 1980, Lenhart et al. 2000) and siderophores 

(Kraemer et al. 2015). In contrast to U, Th is redox-insensitive and significantly less soluble, ultimately concentrating 

in the particulate/colloidal fraction of oxygenated waters (Moulin and Ouzounian 1992, Porcelli et al. 2001, Pokrovsky 

et al. 2010). These differences result in Th-U fractionation throughout soils and rivers (Mathieu et al. 1995, Chabaux 

et al. 2003, Suhr et al. 2018, Yu et al. 2019) relative to upper crustal rocks with a Th/U ratio ~4 (Kamber et al. 2005, 

Rudnick and Gao 2014). This fractionation leads to generally subcrustal Th/U ratios in river water, as evident from 

the global riverine Th/U data compiled by Gaillardet et al. (2014) ranging from 0.01-6.23 with a mean of 1.38 ± 3.26 

(n=24). 

The consistently subcrustal Th/U ratios in the dissolved load of the ORB waters indicate the preferential chemical 

weathering transfer and solubilization of U>Th expected for oxygenated conditions and widely observed in other 

catchments (e.g. Yu et al. 2019). The selectively higher Th/U ratios of the two tributaries draining from the east into 

the Ottawa River (Rivière Noire and Coulonge) suggest a lithological control releasing less U or a catchment processes 

leading to enhanced U retention (e.g. more reductive scavenging in organic-rich waters/sediment) in comparison to 

other ORB waters. The similar Th/U ratio of SLRS-6 to the new OR samples (Figure 9) suggest that signatures 

inherited from silicate-dominated parts of the catchment are not significantly influenced downstream by U-bearing 

Paleozoic sedimentary rocks or agricultural contaminants that could produce even lower subcrustal Th/U ratios. 

Both Mo and W are redox-sensitive with a solubility aided by oxyanion (MoO4
2-, WO4

2-) formation during 

weathering and aqueous transport in oxygenated and near-neutral environments (Turner et al. 1981). The Mo/W of 

the upper continental crust composite of Rudnick and Gao (2014) is 0.58 and alluvial sediment of the Murray-Darling 



 

Basin, Australia (Marx and Kamber 2010) is slightly lower with a Mo/W mean of 0.28 ± 0.23 (n=105). The Mo/W 

ratio of seawater is significantly higher at ~950-1150 and rather constant with depth in oxygenated waters due to their 

near-conservative marine behaviour and long residence time (Sohrin et al. 1987, Firdaus et al. 2008). The much higher 

Mo/W of seawater than upper crust is attributed primarily to the preferential scavenging of W>Mo on Fe-Mn 

(oxy)(hydr)oxide surfaces, and especially those of Fe (oxy)(hydr)oxides, under oxic-hypoxic conditions (Takematsu 

et al. 1990, Hein et al. 2003, Kashiwabara et al. 2013, Kashiwabara et al. 2017, Dellwig et al. 2019). However, Mo>W 

removal to sediment also occurs in sulfidic environments (Bauer et al. 2017). Prior to the oceans, decoupling of Mo-

W can be traced across estuaries where Mo behaves more conservatively than W (van der Sloot et al. 1985, Bauer et 

al. 2018) as well as into terrestrial environments as indicated by river waters with Mo/W ratios ranging from 0.3-68 

(Mohajerin et al. 2016, Bauer et al. 2018). Terrestrial fractionation appears to begin in weathering profiles, but relative 

Mo-W mobility is probably controlled initially by protolith mineralogy (Greaney et al. 2018) as evident by preferential 

W>Mo release recorded in a basaltic saprolite (Babechuk et al. 2015). The details of pedogenic Mo-W fractionation 

are poorly understood. 

The consistently supercrustal Mo/W ratios of the ORB waters (12.0-74.5) cover a similar range to other river 

waters measured to date (Mohajerin et al. 2016, Bauer et al. 2018). The entire Ottawa River T-C transect has 

supercrustal Mo/W ratios with minimal downstream variation, suggesting that the signature is inherited primarily from 

processes in aquatic environments nearer the source, or in soils. Assuming the bedrock in the ORB has an average 

Mo/W ratio of <1 similar to upper crustal estimates, the ORB water ratios indicate either incongruent weathering 

favouring Mo release or W>Mo adsorption effects on Fe (oxy)(hydr)oxide surfaces (comparable to marine 

environments). However, more organic-rich or lower pH conditions could also favour increased Mo/W ratios (Bednar 

et al. 2009). Some combination of these processes appears to produce the more extreme Mo/W ratios locally in the 

tributaries. Without further work, the mechanisms of Mo-W fractionation are speculative. Nevertheless, the results 

suggest that Mo/W ratios could emerge as a reasonable tracer of terrestrial (oxy)(hydr)roxide development in a similar 

manner to Ce anomalies. The minor downstream variations of Mo/W in the Ottawa River could be related to changing 

tributary inputs with variable Mo/W ratios; the inflection point where Mo/W ratios start to increase downstream is 

beyond the area where the Rivière Noire and Rivière Coulonge with higher Mo/W meet the Ottawa River. However, 

riverine colloid-particulate effects cannot be ruled out in generating some of the Mo/W variation in ORB waters, since 

W has been documented to have a high affinity for Fe-colloids in rivers and groundwater in contrast to Mo being 

present as a truly dissolved species (Pokrovsky and Schott 2002, Pokrovsky et al. 2006, Johannesson et al. 2013). 

Independent of W, Mo is of notable interest in the ORB due to the unusual Mo stable isotope composition 

reported for the Ottawa River via the SLRS CRM (Archer and Vance 2008). On an array of river waters from across 

the globe, the Ottawa River forms an end-member with low Mo abundance and significant enrichment in heavy Mo 

isotopes. The origin of this signature was interpreted by Archer and Vance (2008) to indicate the preferential retention 

of light Mo isotopes in soils (King et al. 2018). However, a detailed assessment of other potential effects such as 

inheritance from atmospheric particulates (King et al. 2016) or anthropogenic/natural input from ore deposits in the 

northern ORB has yet to be undertaken.   

6. Conclusions 



 

This study describes a simple and rapid ICP-MS workflow capable of producing high-precision natural water 

data for ≥38 analytes (Ca, Mg, Na, K, and 34 trace elements) down to pg g-1 levels from sample volumes ≤9 mL. This 

direct analysis method minimizes preparation time, costs, and sample handling and associated blank compared to pre-

concentration strategies (Bau and Dulski 1996, Bayon et al. 2011, Fisher and Kara 2016, Hoang et al. 2019), but it 

requires access to clean laboratory space to reduce blanks in reagents and containers used in sampling and analysis. 

The final analyte list can be extended, or modified in terms of acquisition parameters, depending on the volume of 

sample and instrumentation available. The method is customizable to even lower sample volumes than the lowest (~2 

mL) used here (at a compromise between uptake rate, number of analytes, and acquisition time) and adaptable to other 

types of ICP-MS and sample introduction strategies offering higher mass resolution or enhanced interference removal 

(e.g. sector field ICP-MS or ICP-MS/MS instruments). The method is also appropriate for saline samples following 

pre-dilution to minimize matrix ion effects during analysis (see Lawrence and Kamber 2006, 2007). All of these 

factors make the method attractive for wide regional sampling programs (e.g. Leybourne and Johannesson 2008), low-

volume sample applications (e.g. extracted pore waters, soil moisture, plant fluids, etc.), or studies requiring the bulk 

of the sample to be preserved for other analyses (e.g. stable metal isotope ratio analysis). However, detection limits 

for the lowest abundance elements (e.g. the HFSE Ta, Hf, W) are liable to be reached for very trace element-poor 

natural waters or when applying pre-dilution.  

A compilation of NRC-CNRC SLRS-6 river water CRM trace element data (63 measurements from 7 

independent bottles) measured with the ICP-MS method across two different facilities provides constraints on method 

precision and accuracy, as well as new recommended SLRS-6 information values. Inter-bottle variations were 

negligible within analytical uncertainty. Precision was demonstrated to be excellent for the vast majority of analytes 

(e.g. ≤5% 2RSD for Na, Mg, K, Ca, Li, Rb, Sr, Zr, Nb, Mo, Cs, Ba, REE+Y, Hf, W, U). Of the elements measured, 

11 are certified by NRC-CNRC, and agreement was excellent for 9 elements (bias <5%: Na, Mg, K, Ca, Sr, Sb, Ba, 

Pb, U), good for 1 element (bias 5-10%: Mo), and poor for 1 element (bias >10%: Cd). For 27 uncertified elements, 

comparison with literature values from Yeghicheyan et al. (2019) yields excellent to good agreement (<10% bias) 

with the exception of some of the lowest abundance elements (Tl, Th, Hf, W). For several of the HFSE, the results of 

this study are generally lower than in Yeghicheyan et al. (2019) and agree much closer with reported abundances from 

earlier generations of the SLRS CRM. The lack of certified HFSE abundances (notably Nb-Ta-Zr-Hf-W) in the SLRS 

series and other natural water CRM remains a major barrier in method development and inter-laboratory comparison. 

Further, the long-term aqueous stability of some HFSE (e.g. Ta, Th) in distributed CRM bottles is unclear. To address 

both of these issues, it is recommended that an analytical round-robin involving facilities specialized in low-level 

HFSE measurements be organized shortly after a new CRM is made available, and for each facility to subsequently 

run long-term tests of HFSE stability.    

The first ultra-trace element characterization of the dissolved (<0.45 µm) load of ORB waters (14 samples from 

the Ottawa River, 11 from tributaries, and 4 from lakes/ponds) was undertaken, with focus on areas at and upstream 

of the SLRS CRM collection sites. These data provide context to the signatures measured for decades in the SLRS 

CRM series. Beyond this, the data offer a snapshot of riverine signatures generated in a catchment draining 

predominantly Precambrian felsic igneous/metamorphic rocks. The catchment geology produces an atypically 



 

LREE>HREE-enriched upper continental crust-normalized REE+Y pattern in the dissolved load of the ORB river 

waters. A downstream decrease in REE+Y abundance points to either mixing/dilution effects or colloid removal in 

the Ottawa River that ultimately results in more negative Eu and Ce anomalies but otherwise does not significantly 

change the REE+Y pattern. The HFSE (Nb-Ta-Zr-Hf-Th-U-Mo-W) show variable fractionation relative to estimated 

bulk compositions of the upper continental crust, in accordance with their relative solubility, riverine particle 

reactivity, and presumed affiliation with colloidal material. Zirconium and Hf abundances decrease downstream in 

the Ottawa River, yet crustal Zr/Hf ratios are retained and indicate weathering and colloidal transport/removal 

processes do not result in significant Zr/Hf fractionation, similar to some previous findings (Godfrey et al. 1996, 

Firdaus et al. 2008, Godfrey et al. 2008) but contrasting with others from higher ionic strength waters (Zuddas et al. 

2017, Censi et al. 2018, Zuddas et al. 2018). Niobium and Ta abundances decrease downstream in the Ottawa River, 

but with consistently supercrustal and increasing Nb/Ta ratios. These results appear to capture hitherto undescribed 

terrestrial Nb/Ta fractionation. However, with a highly limited availability of Nb/Ta ratios from other rivers for 

comparison, the full extent and environmental importance of terrestrial Nb/Ta fractionation remains open (Filella 

2017). The Th/U and Mo/W ratios of ORB waters are consistent with preferential transfer and solubilization of U>Th 

and Mo>W. These data provide further evidence for terrestrial Mo/W fractionation, which is still poorly understood, 

and suggests it could indirectly track soil (oxy)(hydr)oxide development during oxidative chemical weathering akin 

to Ce anomalies, or some localized aquatic particulate W>Mo removal upstream of sampling.  

The combination of multiple REE+Y and HFSE fingerprints reveal different aspects of the ORB catchment 

weathering and hydrology. These results illustrate one of the applied advantages of the ICP-MS method – the ability 

to measure a full suite of elements at ultra-trace (<ng g-1) levels in a single, rapid analysis. Without the assessment of 

particulate/colloid fraction geochemistry or other hydrological parameters (e.g. anion budgets, mineral saturation 

modelling) for this study, the results are designed primarily to layout the baseline ultra-trace element geochemistry of 

the ORB for more in-depth and targeted studies in the future. Future studies are recommended to better define 

processes in ORB soils, include a more complete characterization of the upper ORB (notably east of Lake 

Timiskaming and closer to the Ottawa River head waters), and revisit ultra-trace element signatures with apportioning 

between colloidal, suspended particulate, and truly dissolved loads. 
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Appendix A 

Table A1 contains the NRC-CNRC certified and reference (Be) mass fraction abundances with expanded 

uncertainties (UCRM) for SLRS-6 (https://doi.org/10.4224/crm.2015.slrs-6) and literature abundances from the 

compilation reported in Yeghicheyan et al. (2019). The mean and expanded uncertainty (U), along with the number 

of participating laboratories (p) and analyses (n) are included from the latter compilation. Note that certified and 

literature abundances from analytes not determined as part of this study are included for reference. All abundances 

were converted to mass fractions using the SLRS-6 density of 0.9985 g mL-1 at 21 °C, when necessary. Data from this 

study are compared quantitatively to the certified or literature abundances using a %bias calculation, where �̅� is the 

compiled mean from Table 1 and µ is the certified, reference, or literature value in Table A1.  
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Figure Captions 

Fig. 1 Simplified hydrology of the Ottawa River basin (ORB) showing the Ottawa River and main tributaries. 

Sampling sites along the Ottawa River transect (red squares) and 4 tributaries (Mattawa, Petawawa, Noire, 

Coulonge; yellow squares) for this study and for SLRS-3/-4 (near Chenaux, Ontario) and SLRS-5/-6 (near 

Ottawa, Ontario) are indicated. Inset map of Canada shows the position of the ORB along the Ontario-Québec 

provincial border. Map redrafted and modified from Telmer and Veizer (1999). 

Fig. 2 Simplified bedrock geology map of the Ottawa River basin (ORB). Map redrafted from Telmer and 

Veizer (1999) based on the original work of Baer et al. (1978) (bedrock geology) and Occhietti (1989) (extent 

of Champlain Sea incursion).   

Fig. 3 Methodology workflow from: (1) field sampling and probe measurement applying a “clean hands/dirty 

hands” approach; (2) water filtration to 0.45 or 0.2 µm (example shown with a hand vacuum system and 

exchangeable filters) and subsequent preservation with acid, and; (3) clean laboratory preparation, ICP-MS 

measurement, and analysis of results. 

Fig. 4 Comparison of compiled SLRS-6 abundance data (ng g-1 for Na, Mg, K, and Ca, and pg g-1 for all 

others) from this study (n=63; Table 1) to the compilation recently published in Yeghicheyan et al. (2019) 

(Table A1). The full range of abundances is shown in (a) and only those elements with <100 pg g-1 is shown in 

(b), as highlighted by the shading in (a). The solid and stippled lines represent equal abundances and ± 10% 

difference, respectively. Error bars are the standard deviation (2s) or expanded uncertainty (U) for the 

respective datasets. In (b) the elements with a bias greater than ±10% between each study are identified. 

Fig. 5 Comparison of new ORB water data to SLRS-6 via percent difference. The data are divided into the 

Ottawa River T-C transect (a) and Ottawa River basin tributaries (b). The Ottawa River sample data (n=14) are 

presented in box-whiskers, with boxes divided at the median and extending to upper and lower quartiles and 

whiskers extending to the maximum and minimum data. The mean is shown as a star in each box. The 

tributaries are shown with only the mean percent difference for each tributary. 

Fig. 6 MuQ-normalized REE+Y patterns for SLRS-6 (a), selected data for SLRS-4 and SLRS-5 for 

comparison to SLRS-6 (b), new samples from the Ottawa River from this study (c), and the same data from (c) 

scaled to the ΣREE of SLRS-6 to illustrate pattern similarity apart from variations in Ce, Eu, and Y (d). The 

SLRS-6 data from this study (Table 1) are compared to those of Yeghicheyan et al. (2019) (Table A1) and 

Schmidt et al. (2019) (excluding Y) with respective uncertainties. Data for SLRS-4 (filled diamonds) and 

SLRS-5 (filled hexagons) are from Lawrence et al. (2006a) and Yeghicheyan et al. (2013), respectively.  

Fig. 7 MuQ-normalized REE+Y pattern for the Rivière Noire (a), Rivière Coulonge (b), Petawawa River (c), 

and Mattawa River (d) tributaries in the ORB. The pattern of SLRS-6 (pink line; Table 1) is shown in each 

panel for comparison. 

Fig. 8 Spatial changes in ORB REE+Y characteristics (a: ΣREE; b: Prn/Ybn; c: Lan/Lan*; d: Cen/Cen*; e: 

Eun/Eun*; f: Gdn/Gdn*; g: Y/Ho). Samples are divided into SLRS-6 (Table 1), new Ottawa River samples 

(Table 2), and tributaries (Table 3). Data in each plot are organized from upstream (top) to downstream 

(bottom) for each respective river.  

Fig. 9 Spatial changes in ORB HFSE ratios (a: Zr/Hf; b: Nb/Ta; c: Mo/W; d: Th/U) divided into SLRS-6 

(Table 1), new Ottawa River samples (Table 2), and tributaries (Table 3). Data in each plot are organized from 

upstream (top) to downstream (bottom). Shaded horizontal areas represent upper continental crust Zr/Hf and 

Nb/Ta ratios. 



 

Fig. 10 Histogram of Prn/Ybn ratios (MuQ-normalized) from the world river compilation of Gaillardet et al. 

(2014) and the ORB (including Ottawa River and tributaries) to illustrate the atypical LREE>HREE 

enrichment in the latter.   

Fig. 11 Compilation of seawater and freshwater dissolved Zr-Hf-Nb-Ta data compared to the ORB waters in a 

plot of Zr vs. Zr/Hf (a) and Nb vs. Nb/Ta (b). Seawater is divided into shallow and deep at a depth of 1000 m 

as per Niu (2012). Compiled seawater data from: NE Atlantic Ocean (Godfrey et al. 1996); WN Pacific Ocean 

(Firdaus et al. 2008); Pacific Ocean (Firdaus et al. 2018); N Atlantic Ocean (Firdaus et al. 2018); NE Indian 

Ocean and surrounding seas (Firdaus et al. 2018). Compiled freshwater data for Zr-Hf (Godfrey et al. 1996, 

Firdaus et al. 2008, Censi et al. 2018) show higher Zr and lower Zr/Hf relative to seawater. Freshwater Nb-Ta 

data are highly limited with only the Uji River (Firdaus et al. 2008) and SLRS-4 (Filella and Rodushkin 2018) 

available to compare to the SLRS-6 and ORB data from this study. 

 

Table Captions 

Table 1 SLRS-6 element abundances (Na, Mg, K, Ca in ng g-1, all others in pg g-1) determined with the UT 

and TCD Setups and compiled from both along with selected anomaly and mass ratios. 

Table 2 Ottawa River element abundances (Na, Mg, K, Ca in ng g-1, all others in pg g-1) along with selected 

anomaly and mass ratios. 

Table 3 ORB tributary element abundances (Na, Mg, K, Ca in ng g-1, all others in pg g-1) along with selected 

anomaly and mass ratios. 

Table A1 Comparison of SLRS-6 element abundances from this study with NRC-CNRC certified/reference 

values and literature compilation values of Yeghicheyan et al. (2019). 



Ottawa River
Headwaters

SLRS-3/4

SLRS-5/6

Ottawa
Montreal

Temiscaming

Lake 
Timiskaming

Val D’Or
Rouyn-

Noranda

Hull

ALGONQUIN
PROVINCIAL

PARK

PARK DE
KIPAWA

PARC DU MONT-
TREMBLANT

Pembroke

Arnprior

N

0 30 60 90 120
km

Scale: ~1:3,000,000

Simplified Hydrology of the Ottawa River Basin

Riviere des Outaouais

C
am

ac
hi

ga
m

a 

R.

K
enojevis R

.

Lac
Simard

Montreal R.
B

la
nche R

.

Kipawa R.

Mattawa R . Ottawa River
Lac 

St. PierreR
. N

oi
re

R
. C

ou
lo

ng
e

Petawawa R.

Bonechere R.

Mad
awaska R.

M
is

si
ss

ip
pi

 R
.

R
id

ea
u 

R
.

R
. G

at
in

ea
u

R
. L

ie
vr

e

R
. P

et
ite

 N
at

io
n

So
ut

h 
N

at
io

n
 R

.

R
. R

ou
ge

R
. N

or
d

Rigaud R.

St. L
aw

re
nce

 R
ive

r

Ottawa River sample
Tributary sample

ORB



Ottawa
Montreal

Quebec

Extent of Champlain Sea
Incursion (Pleistocene)

Ottawa River

Simplified Bedrock Geology of the Ottawa River Basin

N

0 100 km

Archean Greenstone
(Abitibi Volcanics)
Archean Gneiss
(Superior Province)
Proterozoic & Archean
Gneiss

Proterozoic Gneiss
(Grenville Province)

Proterozoic Metasediments
(Southern Province)
Proterozoic Granulites
(Grenville Province)

Proterozoic Metasediments
(Grenville Province)
Ordovician-Silurian Sediments
(St. Lawrence Lowlands)



1: Clean sampling & water parameter measurements (e.g. Eh, pH, conductivity)

“Clean hands”

“Dirty hands”

2: Water filtration & preservation for analyses (e.g. acidification with ultra-pure HNO3)

Science

HNO3

acidified

3: Clean laboratory sample preparation, mass spectrometry, and data analysis

9.0014

acidified

Res
ear

ch ���������������

X

La Ce Pr Nd SmEuGdTb Dy Y Ho Er TmYbLu

M
uQ

-n
or

m
al

iz
ed

 S
LR

S-
6 

da
ta

10-6

10-5

10-4

La Ce Pr Nd SmEuGdTb Dy Y Ho Er TmYbLu

M
uQ

-n
or

m
al

iz
ed

 S
LR

S-
6 

da
ta

10-6

10-5

10-4

ph

Note: all sample containers should be acid leached and rinsed prior to field work



100 101 102 103 104 105100

101

102

103

104

105

SLRS-6 abundances (this study)

SL
R

S-
6 

ab
un

da
nc

es
 (l

ite
ra

tu
re

)

100 101 102
100

101

102

a b

Hf

Nb
Cd

Tl

W

Th



Na K Li Rb Y Nb Cd Sb Ba Ce Nd Eu Tb Ho Tm Lu Ta Tl Th

Mg Ca Be Sr Zr Mo Sn Cs La Pr Sm Gd Dy Er Yb Hf W Pb U
-100

-50

0

50

100

%
D

iff
er

en
ce

 fr
om

 S
LR

S-
6

(a) Ottawa River transect (n=14)

Tl ThNa K Li Rb Y Nb Cd Sb Ba Ce Nd Eu Tb Ho Tm Lu Ta

Mg Ca Be Sr Zr Mo Sn Cs La Pr Sm Gd Dy Er Yb Hf W Pb U
-100

-50

0

50

100

%
D

iff
er

en
ce

 fr
om

 S
LR

S-
6

(b) Ottawa River basin tributaries

Mattawa River (n=2)

Riviere Noire (n=4)
Petawawa River (n=3)

Riviere Coulonge (n=2)

Sn

Sn



La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu

M
uQ

-n
or

m
al

iz
ed

 a
bu

nd
an

ce
s 

(x
10
⁶)

2

3

4

5
6
7
8
9

20

10

La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu

SLRS-4 (Lawrence et al. 2006)

SLRS-5 (Yeghicheyan et al. 2013)
SLRS-6 (this study)

b. SLRS seriesSLRS-6 (this study)

SLRS-6 (Yeghicheyan et al. 2019)

2

3

4

5
6
7
8
9

20

10

M
uQ

-n
or

m
al

iz
ed

 a
bu

nd
an

ce
s 

(x
10
⁶) a. SLRS-6

c. Ottawa River samples d. Ottawa River samples (scaled to SLRS-6)

SLRS-6 (Schmidt et al. 2019)



La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu

d. Mattawa River (n=2)

La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu

M
uQ

-n
or

m
al

iz
ed

 a
bu

nd
an

ce
s 

(x
10
⁶)

2

3

4

5
6
7
8
9

20

10

c. Petawawa River (n=3)

b. Rivière Coulonge (n=2)

M
uQ

-n
or

m
al

iz
ed

 a
bu

nd
an

ce
s 

(x
10
⁶) a. Rivière Noire (n=4)

2

3

4

5
6
7
8
9

20

10



ΣREE (pg g-1)
500 1000 1500 2000

SLRS-6

O
tta

w
a

Coulonge

Noire

Petawawa

Mattawa

Prn/Ybn

1.5 2.0 2.5 3.0

Lan/Lan*
0.9 0.95 1.0 1.05 1.1

Cen/Cen*
0.4 0.5 0.6 0.7 0.8

Eun/Eun*
0.7 0.8 0.9 1.0

Gdn/Gdn*
1.00 1.05 1.10 1.15

Y/Ho
27 28 29 30 31 32

a b c d e f g



U
pp

er
 c

on
tin

en
ta

l c
ru

st

Zr/Hf
10 15 20 25 30 35 40

Nb/Ta

U
pp

er
 c

on
tin

en
ta

l c
ru

st

10 20 30 40 50

Mo/W
0 20 40 60 80

Th/U
0.0 0.2 0.4 0.6 0.8 1.0

a b c d
M

P

N

C



Prn/Ybn

0.0 0.5 1.0 1.5 2.0 2.5 3.0

no
. o

f s
am

pl
es

0

2

4

6

8

10

12

14

16
World river compilation (n=17)

Ottawa River basin (n=26)



Zr (pg g-1)
0.1 1 10 100 1000

Zr
/H

f

10

100

1000

Nb (pg g-1)
0.1 1 10

10

100

N
b/

Ta

ORB

Shallow seawater

Freshwater
Deep seawater

SLRS-6 (this study) 
SLRS-4 (F. & R., 2018) 
Uji River (F. et al. 2008)



Table 1 SLRS-6 element abundances (Na, Mg, K, Ca in ng g-1, all others in pg g-1) and selected 

anomaly and mass ratios determined with the UT and TCD Setups along with a compilation of 

the data from both setups  

 

 
UT Setup 

k=7, n=21 

TCD Setup 

k=1, n=42 

%diff. 

UT-

TCD 

SLRS-6 

Compiled 

k=8, n=63 

 Unit mean 2s 2RSD mean 2s 2RSD  mean 2s 2RSD 

Na ng g-1 2630 40 1.5 2770 53 2.0 5.1 2720 140 5.1 

Mg “ 2130 31 1.5 2150  34 1.6 1.0 2140 39 1.8 

K “ 635 20 3.1 657 11 1.7 3.4 650 25 3.9 

Ca “ 8680 175 2.0 8790 130 1.5 1.3 8750 178 2.0 

Li pg g-1 548 4 0.7 552 7 1.3 0.8 551 8 1.4 

Be “ 7.48 0.40 5.2 7.08 0.30 4.2 5.5 7.21 0.50 7.0 

Rb “ 1415 16 1.1 1446 10 0.7 2.2 1435 32 2.2 

Sr “ 39850 500 1.2 40750 180 0.4 2.2 40450 910 2.3 

Y “ 129.2 1.3 1.0 131.4 2.2 1.7 1.7 130.7 2.9 2.2 

Zr “ 66.4 2.0 3.0 65.5 1.0 1.5 1.4 65.8 1.6 2.5 

Nb “ 2.60 0.09 3.3 2.60 0.10 4.0 0.0 2.60 0.10 3.7 

Mo “ 195.0 3.3 1.7 200.2 2.1 1.0 2.6 198.4 5.5 2.8 

Cd “ 5.5 0.6 12 5.6 0.5 8.7 0.9 5.5 0.5 9.8 

Sn “ 4.5 0.4 9.5 4.7 1.3 28 2.8 4.6 1.1 23 

Sb “ 356 4 1.0 331 6 1.8 7.3 340 25 7.3 

Cs “ 4.66 0.11 2.3 4.71 0.07 1.5 1.1 4.69 0.10 2.1 

Ba “ 14220 70 0.5 14340 132 0.9 0.8 14300 160 1.1 

La “ 250.4 2.5 1.0 250.6 0.9 0.4 0.1 250.6 1.6 0.6 

Ce “ 300.2 3.2 1.1 300.0 1.1 0.4 0.0 300.1 2.0 0.7 

Pr “ 60.56 0.50 0.8 60.75 0.61 1.0 0.3 60.69 0.60 1.0 

Nd “ 230.2 1.7 0.7 230.6 2.6 1.1 0.1 230.5 2.4 1.0 

Sm “ 38.54 0.60 1.6 38.64 0.44 1.1 0.3 38.61 0.50 1.3 

Eu “ 6.66 0.17 2.5 6.72 0.16 2.4 0.9 6.70 0.17 2.5 

Gd “ 30.45 0.48 1.6 30.29 0.80 2.6 0.5 30.35 0.72 2.4 

Tb “ 3.915 0.074 1.9 3.917 0.045 1.1 0.1 3.917 0.060 1.4 

Dy “ 21.07 0.46 2.2 21.11 0.30 1.4 0.2 21.10 0.36 1.7 

Ho “ 4.305 0.100 2.3 4.317 0.056 1.3 0.3 4.313 0.073 1.7 

Er “ 11.92 0.26 2.2 11.90 0.12 1.0 0.1 11.91 0.18 1.5 

Tm “ 1.720 0.042 2.4 1.722 0.032 1.9 0.1 1.721 0.035 2.0 



Yb “ 11.16 0.22 2.0 11.16 0.14 1.2 0.0 11.16 0.17 1.5 

Lu “ 1.756 0.030 1.7 1.755 0.021 1.2 0.0 1.756 0.024 1.4 

Hf “ 2.03 0.06 2.7 1.99 0.05 2.6 2.0 2.00 0.06 3.2 

Ta “ 0.063 0.007 11 0.059 0.007 12 7.7 0.060 0.008 14 

W “ 11.23 0.27 2.4 11.25 0.23 2.1 0.2 11.24 0.25 2.2 

Tl “ 6.99 0.14 2.0 7.55 0.26 3.5 7.7 7.36 0.58 7.9 

Pb “ 154 1 0.7 172 10 5.5 11 165 19 11 

Th “ 21.1 1.2 5.7 19.1 2.2 12 10 19.8 2.7 14 

U “ 69.5 0.6 0.9 70.9 0.4 0.6 2.0 70.4 1.4 2.0 

ΣREE “ 973 7 0.7 974 4 0.4 0.1 973 5 0.5 

Prn/Ybn - 2.08 0.05 2.3 2.09 0.03 1.5 0.3 2.09 0.04 1.8 

Lan/Lan* - 1.028 0.027 2.7 1.022 0.035 3.4 0.5 1.024 0.033 3.2 

Cen/Cen* - 0.576 0.010 1.8 0.574 0.012 2.0 0.5 0.575 0.011 2.0 

Eun/Eun* - 0.850 0.022 2.6 0.856 0.021 2.4 0.7 0.854 0.022 2.6 

Gdn/Gdn* - 1.078 0.023 2.1 1.071 0.029 2.7 0.6 1.073 0.028 2.6 

Y/Ho - 30.00 0.71 2.4 30.44 0.61 2.0 1.4 30.29 0.76 2.5 

Zr/Hf - 32.71 1.20 3.7 32.91 1.00 3.0 0.6 32.84 1.07 3.3 

Nb/Ta - 41.2 4.9 12 44.6 4.3 9.7 8.0 43.4 5.5 13 

Th/U - 0.30 0.02 5.4 0.27 0.03 12 12 0.28 0.04 15 

Mo/W - 17.37 0.58 3.3 17.79 0.43 2.4 2.4 17.65 0.65 3.5 

Note: REEn/REEn* calculated from normalized concentrations as described in Section 4.6.1. 

 



Table 2 Ottawa River element abundances (Na, Mg, K, Ca in ng g-1, all others in pg g-1) along with selected anomaly and mass ratios 

  Ottawa River 

 Unit SBB01 PDF01 CBM01 RRR01 RJL01 RJR01 RJR02 BCR01 KLR01 MAC01 OAR01 TML01 TMD01 TMU01 

Na ng g-1 1895 1909 2242 1900 2069 1990 1998 2722 3236 2775 2853 1721 1689 1730 

Mg “ 1532 1573 1562 1533 1715 1631 1622  1848 1814 1684 1732 1914 1937 1939 

K “ 553 556 577 555 552 544 575 599 634 516 526 600 594 623 

Ca “ 5457 5511 5509 5407 6219 5850 5840 6850 6373 6039 6386 7238 7103 7173 

Li pg g-1 472 470 477 478 509 495 488 524 528 510 522 588 567 573 

Be “ 6.31 5.96 5.89 6.11 12.0 7.13 7.86 7.36 8.40 7.62 7.31 9.03 8.06 8.23 

Rb “ 1360 1379 1349 1344 1264 1236 1285 1323 1424 1104 1159 1366 1247 1298 

Sr “ 26580 26290 27750 24910 23340 22740 22830 25260 26430 21720 22180 25450 24980 25240 

Y “ 135.7 130.0 138.3 138.1 153.2 145.3 145.7 133.0 195.2 125.6 129.3 159.3 157.0 155.5 

Zr “ 32.9 24.8 33.4 30.8 58.6 51.3 47.4 55.5 74.1 102 109 95.1 87.4 82.3 

Nb “ 2.31 1.82 2.31 1.94 3.75 2.82 2.55 2.52 4.60 3.50 5.08 8.21 5.85 5.71 

Mo “ 176.0 175.8 192.3 172.1 211.0 197.6 197.4 248.4 227.6 256.8 266.8 268.0 279.3 276.5 

Cd “ 4.6 4.5 4.6 6.8 6.8 5.9 9.6 7.8 8.4 6.7 6.8 6.1 5.8 5.8 

Sn “ 27.3 126 18.3 31.2 24.4 22.0 33.5 56.4 139 50.4 19.8 28.5 15.6 21.4 

Sb “ 47.5 55.6 57.5 54.7 59.6 63.9 62.3 66.8 70.0 71.7 71.0 73.0 72.3 78.1 

Cs “ 5.77 5.48 5.89 5.67 5.44 5.19 5.58 4.36 5.67 4.04 4.73 8.09 5.07 5.24 

Ba “ 10680 11120 10640 10350 10430 9653 10630 9947 11610 8287 8329 9566 8707 8904 

La “ 273.3 254.5 287.8 280.6 307.4 280.5 282.8 236.2 403.2 242.7 248.9 350.0 323.3 321.3 

Ce “ 312.8 298.0 345.0 324.4 385.1 336.5 341.2 275.6 519.5 307.7 322.8 520.3 454.4 453.1 

Pr “ 66.73 63.38 70.14 68.30 74.78 68.91 69.83 57.33 99.25 58.53 59.59 82.71 76.66 76.15 

Nd “ 253.7 240.1 266.7 259.2 282.5 261.9 265.0 218.7 376.4 221.7 226.0 307.1 288.8 284.7 

Sm “ 42.51 40.83 44.32 43.24 47.53 44.82 45.54 37.82 62.57 38.55 38.68 51.95 48.78 48.58 

Eu “ 7.42 7.08 7.55 7.55 8.76 8.20 8.12 7.34 11.6 7.41 7.62 10.0 9.69 9.51 



Gd “ 32.88 31.38 33.61 34.31 37.00 34.96 34.98 30.56 48.69 30.32 30.40 39.62 38.61 37.70 

Tb “ 4.171 3.982 4.272 4.343 4.775 4.456 4.493 3.864 6.467 3.979 3.903 5.201 5.013 4.920 

Dy “ 22.83 21.69 23.41 23.18 25.95 24.37 24.51 22.12 34.30 21.32 21.46 27.54 26.28 26.34 

Ho “ 4.647 4.523 4.696 4.736 5.332 4.986 4.953 4.463 6.906 4.372 4.413 5.500 5.390 5.363 

Er “ 12.77 12.35 12.89 13.00 14.32 13.85 13.59 12.14 18.64 11.96 12.23 15.33 14.87 14.53 

Tm “ 1.875 1.788 1.886 1.886 2.087 1.952 2.028 1.775 2.665 1.741 1.744 2.187 2.183 2.135 

Yb “ 12.00 11.52 12.19 12.27 13.65 12.67 13.01 11.29 17.07 11.04 11.54 14.26 13.86 13.74 

Lu “ 1.916 1.835 1.932 1.924 2.124 2.036 2.033 1.786 2.631 1.798 1.772 2.123 2.201 2.119 

Hf “ 1.15 0.92 1.02 1.02 1.89 1.60 1.39 1.61 2.31 2.96 3.09 2.82 2.46 2.466 

Ta “ 0.076 0.064 0.082 0.081 0.133 0.097 0.091 0.091 0.199 0.175 0.215 0.411 0.282 0.286 

W “ 9.11 9.30 12.36 9.95 16.68 16.51 15.98 16.46 11.75 13.43 13.72 12.41 12.37 11.79 

Tl “ 7.06 6.40 6.45 6.92 5.14 5.40 5.43 5.53 6.71 4.67 4.41 6.38 4.95 5.18 

Pb “ 65.0 43.0 54.6 36.1 42.8 33.9 35.9 33.5 79.7 38.8 43.5 96.8 98.2 68.7 

Th “ 13.3 8.6 13.0 9.2 13.8 16.3 15.4 12.9 20.4 24.9 24.6 27.0 28.4 24.5 

U “ 52.0 51.7 64.6 47.9 60.7 58.5 57.8 69.1 65.0 68.1 69.2 76.1 76.8 76.7 

ΣREE “ 1050 993 1116 1079 1211 1100 1112 921 1610 963 991 1434 1310 1300 

Prn/Ybn - 2.14 2.11 2.21 2.14 2.10 2.09 2.06 1.95 2.23 2.04 1.98 2.23 2.12 2.13 

Lan/Lan* - 1.018 0.991 1.020 1.018 1.009 1.011 1.003 1.031 1.005 1.023 1.034 1.003 1.030 1.014 

Cen/Cen* - 0.545 0.545 0.572 0.552 0.595 0.568 0.567 0.561 0.607 0.609 0.629 0.715 0.683 0.680 

Eun/Eun* - 0.869 0.865 0.853 0.863 0.910 0.907 0.886 0.953 0.911 0.941 0.972 0.953 0.974 0.964 

Gdn/Gdn* - 1.080 1.077 1.071 1.091 1.070 1.080 1.069 1.098 1.050 1.062 1.077 1.051 1.072 1.061 

Y/Ho - 29.20 28.73 29.46 29.16 28.73 29.14 29.42 29.79 28.26 28.73 29.30 28.96 29.13 29.00 

Zr/Hf - 28.74 26.86 32.66 30.10 31.05 32.04 34.10 34.50 32.12 34.31 35.34 33.75 35.54 33.36 

Nb/Ta - 30.5 28.3 28.1 24.1 28.2 29.0 28.1 27.7 23.1 20.0 23.6 20.0 20.7 20.0 

Th/U - 0.26 0.17 0.20 0.19 0.23 0.28 0.27 0.19 0.31 0.37 0.36 0.36 0.37 0.32 

Mo/W - 19.32 18.90 15.55 17.30 12.65 11.97 12.35 15.09 19.37 19.12 19.45 21.60 22.59 23.46 

Note: REEn/REEn* calculated from normalized concentrations as described in Section 4.6.1. 



Table 3 ORB tributary element abundances (Na, Mg, K, Ca in ng g-1, all others in pg g-1) along with selected anomaly and mass ratios 

  Rivière Coulonge Rivière Noire Petawawa River Mattawa River 

 Unit CRL01 CRU01 BRL01 BRR01 BRU02 BRU01 PWL01 PWM01 PWU01 MWL01 MWU01 

Na ng g-1 837 780 893 872 900 913 1400 1180 1172 2291 2223 

Mg “ 744 617 822 827 820 823  1374 1366 1367 1355 1396 

K “ 398 389 427 535 442 439 584 572 598 711 702 

Ca “ 2804 2618 2632 2635 2706 2693 3544 3480 3496 3621 3700 

Li pg g-1 300 290 213 222 216 217 389 381 378 438 457 

Be “ 6.59 5.98 3.73 3.81 4.97 3.89 4.88 4.10 4.43 5.56 5.49 

Rb “ 1228 1210 1298 1309 1316 1283 1273 1281 1301 1403 1398 

Sr “ 26340 24790 23000 23090 23390 23300 28300 28240 28150 26370 26610 

Y “ 170.8 163.0 146.1 141.4 170.7 172.7 149.4 163.3 166.2 121.8 128.0 

Zr “ 12.7 11.5 6.82 7.03 9.02 9.92 5.72 5.72 6.46 8.82 8.43 

Nb “ 2.14 2.03 1.38 0.97 1.40 1.43 0.80 0.86 0.88 1.27 1.56 

Mo “ 70.48 62.43 58.35 56.92 57.40 56.39 85.23 81.45 87.36 102.0 112.2 

Cd “ 4.1 3.8 2.1 1.9 2.1 2.3 1.3 1.1 1.4 2.0 2.1 

Sn “ 21.5 6.25 558 203 23.7 147 145 18.3 14.8 219 114 

Sb “ 47.0 41.0 46.9 47.3 66.6 49.9 46.8 42.9 49.4 53.8 43.4 

Cs “ 10.91 11.06 7.47 7.34 7.57 6.96 6.46 6.48 6.47 3.99 4.01 

Ba “ 12010 10140 8654 8643 8801 9250 17740 18310 18210 13540 12910 

La “ 460.4 442.0 354.2 338.9 420.9 425.5 227.6 258.6 260.5 219.3 244.5 

Ce “ 609.5 579.4 423.2 393.4 481.2 495.2 217.7 269.2 261.3 215.6 300.7 

Pr “ 113.4 108.7 89.00 84.47 104.8 106.0 60.02 68.44 69.00 54.78 63.06 

Nd “ 416.8 398.4 332.8 315.5 390.9 397.8 239.8 271.3 271.1 215.1 246.2 

Sm “ 64.55 61.75 53.36 50.20 61.67 63.28 42.03 48.34 48.29 36.46 42.57 

Eu “ 9.94 9.30 8.10 7.88 9.60 9.63 6.26 7.06 7.20 6.11 6.70 



Gd “ 45.13 43.21 39.20 37.60 45.71 46.16 34.36 39.15 39.08 29.01 32.80 

Tb “ 5.483 5.256 4.795 4.462 5.635 5.561 4.442 4.892 4.922 3.709 4.139 

Dy “ 28.99 28.18 25.42 23.89 29.15 29.64 24.43 26.37 27.07 20.25 22.18 

Ho “ 5.910 5.669 5.101 4.900 5.820 5.921 4.975 5.512 5.516 4.101 4.482 

Er “ 16.35 15.57 14.12 13.61 15.98 16.05 13.60 14.56 14.95 11.25 11.99 

Tm “ 2.387 2.300 2.057 1.958 2.345 2.338 1.908 2.092 2.129 1.648 1.748 

Yb “ 15.20 14.53 13.11 12.67 14.79 14.84 12.57 13.54 13.87 10.87 11.33 

Lu “ 2.336 2.242 2.118 2.067 2.385 2.370 2.079 2.197 2.178 1.740 1.784 

Hf “ 0.60 0.63 0.35 0.39 0.51 0.52 0.34 0.31 0.32 0.42 0.39 

Ta “ 0.073 0.061 0.036 0.032 0.038 0.032 bdl bdl bdl 0.036 0.046 

W “ 1.62 0.99 0.95 0.97 0.95 1.09 1.14 bdl bdl 1.42 2.07 

Tl “ 7.72 7.41 6.00 6.00 6.04 5.74 5.79 5.93 5.91 5.88 6.17 

Pb “ 46.4 44.0 28.6 21.3 44.4 25.8 27.8 25.3 26.1 89.9 50.1 

Th “ 19.3 19.5 18.0 14.1 19.3 20.0 7.74 6.27 6.10 5.31 4.74 

U “ 24.9 23.1 19.1 19.0 20.8 20.7 19.1 19.5 20.2 22.2 21.7 

ΣREE “ 1796 1717 1367 1292 1591 1620 892 1031 1027 830 994 

Prn/Ybn - 2.87 2.87 2.61 2.56 2.72 2.75 1.83 1.94 1.91 1.94 2.14 

Lan/Lan* - 0.942 0.939 0.957 0.963 0.962 0.972 1.041 1.021 1.002 1.061 1.016 

Cen/Cen* - 0.604 0.598 0.544 0.532 0.524 0.536 0.443 0.477 0.455 0.473 0.569 

Eun/Eun* - 0.805 0.787 0.778 0.808 0.793 0.786 0.724 0.720 0.733 0.825 0.786 

Gdn/Gdn* - 1.075 1.074 1.088 1.117 1.085 1.096 1.086 1.108 1.102 1.085 1.082 

Y/Ho - 28.91 28.76 28.63 28.86 29.32 29.17 30.02 29.63 30.14 29.71 28.55 

Zr/Hf - 21.11 18.16 19.23 18.01 17.68 18.91 16.63 18.68 19.92 20.95 21.81 

Nb/Ta - 29.3 33.1 38.0 30.5 36.9 45.2 – – – 35.6 34.1 

Th/U - 0.77 0.85 0.94 0.74 0.93 0.96 0.41 0.32 0.30 0.24 0.22 

Mo/W - 43.63 62.90 61.17 58.91 60.61 51.64 74.52 – – 71.91 54.19 

Note: REEn/REEn* calculated from normalized concentrations as described in Section 4.6.1.; bdl = below detection limit. 



Table A1 Comparison of SLRS-6 element abundances from this study with NRC-CNRC 

certified/reference values and literature compilation values of Yeghicheyan et al. (2019) 

 

 NRC-CNRC 

certified or 

reference(*) value 

%bias 

relative to 

NRC-CNRC 

Compilation of 

Yeghicheyan et al. (2019) 

%bias relative 

to Yeghicheyan 

et al. (2019) 

 Unit  UCRM  mean U p n  

Li pg g-1 – – – 531 25 6 90 3.8 

Be “ 6.6* 2.2 9.2 6.6 1.1 5 75 9.1 

B “ – – – 7401 1282 1 15 – 

Na ng g-1 2770 220 -1.7 2739 128 6 85 -0.6 

Mg “ 2137 58 0.2 2135 72 8 111 0.3 

Al “ 33.9 2.2 – 33.4 1.0 7 105 – 

Si “ – – – 2234 128 5 75 – 

P “ – – – 5.19 1.02 2 30 – 

S “ – – – 1793 142 2 30 – 

K “ 652 54 -0.4 

-0.2 

630 24 7 96 3.1 

Ca “ 8770 200 8624 206 7 102 1.5 

Sc pg g-1 – – – 334 15 1 15 3.8 

Ti “ – – – 526 82 5 75 9.2 

V “ 352 6 – 362 14 8 120 – 

Cr “ 252 12 – 247 12 8 119 – 

Mn ng g-1 2.12 0.10 – 2.14 0.06 8 120 – 

Fe “ 84.5 3.6 – 82.2 2.7 8 120 – 

Ni pg g-1 617 22 – 609 28 8 119 – 

Co “ 53* 12 – 55 3 8 120 – 

Cu “ 24000 1800 – 24740 600 7 105 – 

Zn “ 1760 120 – 1783 110 6 90 – 

Ga “ – – – 11 7 3 45 – 

Ge “ – – – 10 7 3 45 – 

As “ – – – 561 30 7 105 – 

Se “ – – – 72 9 1 15 – 

Rb “ – – – 1412 50 8 120 1.6 

Sr “ 40720 320 -0.7 41090 970 8 120 -1.6 

Y “ – – – 128 6 7 105 1.9 

Zr “ – – – 62 11 3 45 5.9 

Nb “ – – – 8.1 5.7 2 30 -68 



Mo “ 215 18 -7.7 196 18 7 105 1.1 

Cd “ 6.3 1.4 -12 7.4 1.7 6 90 -25 

Sn  – – – 10 8 2 30 -54 

Sb “ 337.7 5.8 0.6 336 10 7 85 1.2 

Cs “ – – – 4.6 0.5 4 60 1.9 

Ba “ 14220 35 0.0 14120 400 8 117 1.2 

La “ – – – 248.7 12.1 9 135 0.8 

Ce “ – – – 293.1 15.1 9 135 2.4 

Pr “ – – – 59.2 1.9 9 135 2.5 

Nd “ – – – 228.1 9.4 9 135 1.0 

Sm “ – – – 39.6 1.7 9 135 -2.4 

Eu “ – – – 7.27 0.35 8 120 -7.9 

Gd “ – – – 31.6 2.5 9 135 -4.1 

Tb “ – – – 4.08 0.27 9 135 -3.9 

Dy “ – – – 21.9 1.1 9 135 -3.8 

Ho “ – – – 4.3 0.3 9 135 0.2 

Er “ – – – 12.4 0.7 9 135 -4.1 

Tm “ – – – 1.79 0.18 8 120 -4.0 

Yb “ – – – 11.2 0.7 9 135 -0.5 

Lu “ – – – 1.91 0.23 8 120 -8.2 

Hf “ – – – 9.5 0.4 1 15 -79 

W “ – – – 16.5 0.4 1 15 -32 

Re “ – – – 13.5 0.2 1 15 – 

Tl “ – – – 8.5 2.9 4 60 -14 

Pb “ 170 26 -2.5 166 13 7 105 -0.3 

Bi “ – – – 1.3 0.3 1 15 – 

Th “ – – – 16 7 5 75 24 

U “ 69.9 3.4 0.7 67 3 8 105 4.9 

Notes: UCRM and U are the expanded uncertainties on the NRC-CNRC certified or reference values and Yeghicheyan 

et al. (2019) compilation values, respectively, as described in the data sources. The Yeghicheyan et al. (2019) 

compilation mean for each element is derived from ‘n’ number of measurements and ‘p’ number of participating 

laboratories, as described in the original source. 



Supplementary Materials to: 

Ultra-trace element characterization of the central Ottawa River basin using a rapid, 

flexible, and low-volume ICP-MS method 

Michael G. Babechuk 1,*, Edel M. O’Sullivan 2, Cora A. McKenna 3, Carolina Rosca4, Thomas F. Nägler 2, 

Ronny Schoenberg 4, Balz S. Kamber 5 

1 Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Canada 

2 Institute of Geological Sciences, University of Bern, Bern, Switzerland 

3 Department of Geology, University of Dublin – Trinity College, Dublin, Ireland 

4 Isotope Geochemistry Group, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, 

Germany 

5 School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Australia  

 

* Correspondence: mbabechuk@mun.ca; Tel.: +1-709-864-6095 

 

Contents 

1. Supplementary figures 

2. Supplementary tables 

3. Additional Ottawa River basin sample details 

4. Additional analytical method details 

5. Accuracy assessment using the GeoPTTM program 

6. Additional SLRS-6 data and testing 

 

  



1. Supplementary figures  

 

List of supplementary figures with captions 

Supplementary Figure 1 Comparison of the separate UT (n=21) and TCD (n=42) SLRS-6 mean 

element abundances measured at a 1.1x dilution factor. Data are compared via normalization to the 

mean of the full compiled dataset (n=63; Table 1). Error bars represent the standard deviations (2s) 

of the separate TCD and UT means. Shaded bars represent the standard deviation (2s) of the 

compiled dataset.  

Supplementary Figure 2 Comparison of UT SLRS-6 data measured at 10x dilution (n=22; 

Supplementary Table 6) normalized to the mean of the full compiled dataset at 1.1x dilution (n=63; 

Table 1).  

Supplementary Figure 3 Comparison of compiled SLRS-6 dataset (n=63; Table 1) from this study 

to the certified or reference (denoted with *) values from NRC-CNRC (see Table 1 and Table 4). 

Error bars represent the standard deviation (2s) from the compilation of this study. Shaded bars 

represent the expanded uncertainty (U) from the NRC-CNRC data. The solid horizontal line at value 

of 1.0 represents equivalent concentration between both datasets. 

  



2. Supplementary tables 

 

List of supplementary tables with captions 

Supplementary Table 1 List of Ottawa River basin samples and GPS coordinates 

Supplementary Table 2 Q-ICP-MS instrument (ThermoFisher Scientific iCAP-Q) operating and 

acquisition parameters used in the UT and TCD Setups 

Supplementary Table 3 Analyte isotopes, interference corrections, calibration values for W-2a with 

comparison to literature abundances, and mean background equivalent concentrations (BEC) 

Supplementary Table 4 GeoPTTM proficiency testing scheme results submitted (xi) for rounds 

GeoPT43, GeoPT44, and GeoPT45 by UT compared to the resultant GeoPTTM consensus values (xpt; 

assigned or provisional*), total number of results used to formulate the consensus value (n), and z-

scores for the submitted results 

Supplementary Table 5 Per-bottle and physical mixture (k=7) SLRS-6 element abundances (Na, 

Mg, K, Ca in ng g-1, all others in pg g-1) along with selected anomaly and mass ratios determined 

with the UT Setup 

Supplementary Table 6 SLRS-6 element abundances (Na, Mg, K, Ca in ng g-1, all others in pg g-1) 

along with selected anomaly and mass ratios determined with the UT Setup at 10x dilution, and 

comparison to compiled UT-TCD Setup values determined at 1.1x dilution 

Supplementary Table 7 ORB pond/lake element abundances (Na, Mg, K, Ca in ng g-1, all others in 

pg g-1) along with selected anomaly and mass ratios. 

 

  



3. Additional Ottawa River basin sample details 

 

The study focused primarily on the Ottawa River and tributary streams in the Ottawa River basin. 

However, 4 samples of lake and small pond water were collected in the vicinity of the Rivière Noire 

tributary and analyzed alongside the aforementioned samples. A full list of all samples and their GPS 

coordinates is provided in Supplementary Table 1. The element abundance data for the pond/lake samples 

is provided in Supplementary Table 7. 

 

4. Additional analytical method details 

 

Both facilities (University of Tübingen, UT; University of Dublin, Trinity College, TCD) that 

produced natural water data for this study used the ThermoFisher Scientific iCAP-Q quadrupole inductively 

coupled plasma mass spectrometer (Q-ICP-MS). The detailed operating and acquisition parameters used at 

each facility for element analyses are outlined in Supplementary Table 2. 

The calibration of signal intensities used the instrument response from the United States Geological 

Survey (USGS) reference material W-2a. Aliquots of 100 mg of the W-2a powder were digested using a 

concentrated HF-HNO3 mixture in sealed Savillex® PFA beakers. Digested solutions were evaporated, 

converted using refluxing with concentrated HNO3, and prepared into a 0.45 M HNO3 stock solution with 

a 1:1000 gravimetric dilution factor, as described in more detail elsewhere (Albut et al. 2018, Babechuk et 

al. 2019). For every experiment, between 3 and 5 dilutions of different W-2a stock solutions were diluted 

into the same internal standard-bearing HNO3 matrix as the water unknowns. The dilutions were prepared 

to a final gravimetric dilution factors (relative to initial powder mass) ranging from 10,000-50,000 to 

construct a calibration line with different signal intensities. The preferred abundance of each analyte in the 

W-2a powder is listed in Supplementary Table 3. These abundances were carefully derived from either in-

house standard addition experiments or literature compilations (Kamber et al. 2003) and are occasionally 

updated based on evolving consensus (e.g. for W as described in the main text). The compiled W-2a values 

(reference values or information values) with uncertainty from Jochum et al. (2016) is provided in 

Supplementary Table 3 for comparison to our preferred values. 

The specific analyte isotopes, mathematical interference corrections, and the background equivalent 

concentrations (BEC) during the analysis for this study at each facility are reported in Supplementary Table 

3. Further details on the this rock calibration-based method, including drift correction strategy, 

interferences, calibration standard preparation, and reports of long-term abundance determinations in 

different geological reference materials can be found in previous studies (Kamber et al. 2003, Lawrence et 

al. 2006, Kamber 2009, Babechuk et al. 2010, Marx and Kamber 2010, Baldwin et al. 2012, Babechuk et 



al. 2015, Albut et al. 2018, Babechuk et al. 2019). A disadvantage of the applied method is poorer precision 

and variable accuracy for Pb-Sn-Cd-As due to their very low abundance and heterogeneity in the USGS 

reference materials (Woodhead and Hergt 2000, Weis et al. 2006, Kamber and Gladu 2009), including the 

W-2a calibrant. However, extensive calibration data monitoring across the TCD and UT facilities indicates 

that for the latter elements some digests of W-2a can be identified as selectively contaminated relative to 

others and removed from excessively biasing calibration lines (Albut et al. 2018). These in-house tests show 

that all other analytes are homogeneously distributed in W-2a, including Mo and W, which show greater 

variability and/or levels of contamination in other USGS reference materials such as BHVO-2 and BCR-2 

(Weis et al. 2006).   

   

5. Accuracy assessment using the GeoPTTM program 

 

The GeoPTTM program provides a means for an analytical facility to evaluate the accuracy of their 

results relative to those determined at other facilities across the globe for the same geological reference 

material. The consensus values (assigned or provisional) resulting from all data received for each round are 

compared to the results submitted by participants using a z-score, a scaled bias estimation where z = (xi – 

xpt)/spt (Analytical Methods Committee 2016). The value xi is the result submitted for an analyte and the 

value xpt is the assigned or provisional abundance for the analyte, which is the best estimate of the most 

probable value in each round based on the number of submitted results and their distribution, typically taken 

as the robust mean (Huber and Ronchetti 2009), median, or mode. The value spt (standard deviation for 

proficiency testing) is a scaled standard deviation that in the case of GeoPTTM is built from the Horwitz 

function (sH), an empirical mass fraction abundance-dependent relationship where sH = k∙xpt
0.8495 (Horwitz 

et al. 1980, Thompson 2000, Potts et al. 2002). Participants of the GeoPTTM program specify one of two 

fitness-for-purpose uncertainty criterion based on their data acquisition method; for high-precision ‘pure’ 

geochemistry methods (Quality 1) sH is calculated using k=0.01, whereas for more routine ‘applied’ 

geochemistry methods (Quality 2) sH is calculated using k=0.02. The participant-specified sH definition of 

spt is used for each proficiency test to determine the z-score for each analyte. In general, a |z| value >3 

suggests a significant source of bias, values <1 indicate minimal bias, and values between 2-3 should be 

evaluated carefully but, statistically, may occur more frequently. Additional details on the GeoPTTM 

program can be found in Thompson et al. (2015), Potts et al. (2019), Webb et al. (2019c), and the ‘Protocol 

for the Operation of GeoPTTM Proficiency Testing Scheme’ (http://www.geoanalyst.org/wp-

content/uploads/2018/06/GeoPT-revised-protocol-2018.pdf). 



The submitted values (xi), consensus values (xpt), and z-scores for the abundances submitted by the 

University of Tübingen (UT) for the GeoPT43 (ADS-1), GeoPT44 (ShCX-1), and GeoPT45 (GONV-1) 

rounds under Quality 1 (k=0.01) criterion are outlined in Supplementary Table 4. These rounds overlapped 

and bracketed the analytical period used to determine the natural water data for this study. GeoPT43 was a 

dolerite (ADS-1); additional details described in Webb et al. (2018). GeoPT44 was a calcareous shale 

(ShCX-1); additional details described in Webb et al. (2019a). GeoPT45 was a silicified siltstone (GONV-

1); additional details described in Webb et al. (2019b). 

The z-score is less than 1 for 28 elements, between 1-2 for 4 elements, and between 2-3 for only Sn in 

GeoPT43 (dolerite). The z-score is less than 1 for 29 elements, between 1-2 for 4 elements, and greater than 

3 for only Cd in GeoPT45 (calcareous shale). The z-score is less than 1 for 24 elements, between 1-2 for 8 

elements, and between 2-3 for only Sn in GeoPT46 (silicified siltstone). Thus, the only elements arising 

with a significant bias are Sn and Cd (determined only in GeoPT44). The high z-score for these elements 

is probably related to minor calibration biases that can be generated by the W-2a calibration strategy 

(Supplementary Section 4). 

 

6. Additional SLRS-6 data and testing 

 

The UT Setup data for SLRS-6 was compiled from measurements of 6 independent bottles of this 

certified reference material (CRM) and 1 physical mixture of the 6 bottles (k=7). The per-bottle data are 

reported in Supplementary Table 5 as mean of 3 measurements (n=3) of each bottle plus the mixture. 

The main measurements of SLRS-6 and the newly collected Ottawa River basin samples were 

undertaken with the minimal dilution (1.1x) needed to add the mixed element/enriched isotope internal 

standard for ICP-MS analysis. However, 2 additional experiments (1 for the UT SLRS-6 bottles and 1 for 

the TCD SLRS-6 bottle) were undertaken at the University of Tübingen after diluting SLRS-6 10x for 

ICP-MS analysis. These experiments were designed to test the analytical coherency of trace element 

abundances and ratios at lower measurement intensities (analogous to more trace-element poor natural 

waters). The mean of 22 measurements (3 each of the UT SLRS-6 bottles, 4 of the TCD SLRS-6 bottle) 

along with uncertainty and a bias calculation relative to the full compiled abundances measured at 1.1x 

dilution (n=63; Table 1) is available in Supplementary Table 6. As discussed in the main text, at these 

higher dilution factors, several elements dropped below the method detection limit filter (Cd, Sn, Ta) and 

precision generally decreased for other elements, as evident in Supplementary Figure 2. Nevertheless, the 

element abundances and ratios were generally very close to the 1.1x experiments, including for Zr/Hf, 

Mo/W, and all REE anomalies (La, Ce, Eu, Gd) where bias was less than ±3% between both datasets.  
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Supplementary Table 1 List of Ottawa River basin samples and GPS coordinates  

Sample ID Description GPS (Latitude, Longitude) 

SBB01 Ottawa River, near Portage-du-Fort & SLRS-3/-4 site 45°34’32.60”N 76°40’13.50”W 

PDF01 Ottawa River, near Portage-du-Fort & SLRS-3/-4 site 45°35’33.60”N 76°40’6.07”W 

CBM01 Ottawa River, near Campbell’s Bay 45°44’2.50”N 76°36’14.50”W 

RRR01 Ottawa River, near Foresters Falls 45°43’9.10”N 76°43’17.10”W 

RJL01 Ottawa River, near Rolphton 46°11’31.60”N 77°41’2.80”W 

RJR01 Ottawa River, near Rolphton 46°11’17.10”N 77°42’10.30”W 

RJR02 Ottawa River, near Rolphton (near RJR01) 46°11’20.10”N 77°42’2.70”W 

BCR01 Ottawa River, near Bissett Creek 46°13’35.60”N 78°3’55.70”W 

KLR01 Ottawa River, near Klock 46°17’30.90”N 78°29’32.10”W 

MAC01 Ottawa River, near Mattawa 46°19’15.40”N 78°38’4.80”W 

OAR01 Ottawa River, near Antoine Park 46°21’13.60”N 78°43’37.50”W 

TML01 Ottawa River, near Thorne 46°42’0.42”N 79°5’55.10”W 

TMD01 Ottawa River, near Temiscaming 46°42’39.95”N 79°6’20.14”W 

TMU01 Ottawa River, near Temiscaming 46°46’23.50”N 79°8’5.14”W 

CRL01 Rivière Coulonge 46°51’39.69”N 76°44’29.42”W 

CRU01 Rivière Coulonge 45°54’38.30”N 76°40’10.60”W 

BRL01 Rivière Noire 45°54’45.40”N 76°56’2.80”W 

BRR01 Rivière Noire 45°55’14.10”N 76°55’11.60”W 

BRU02 Rivière Noire 45°56’27.64”N 76°52’47.20”W 

BRU01 Rivière Noire 45°59’1.60”N 76°50’8.90”W 

PWL01 Petawawa River 45°54’12.80”N 77°16’45.60”W 

PWM01 Petawawa River 45°53’11.70”N 77°18’47.10”W 

PWU01 Petawawa River 45°52’54.40”N 77°22’36.60”W 

MWL01 Mattawa River 46°18’57.40”N 78°42’31.50”W 

MWU01 Mattawa River 46°18’1.09”N 78°52’20.51”W 

CTL01 Chemin Truite 45°56’5.40”N 76°45’46.10”W 

SLL01 Lac Sauriol 45°58’39.80”N 76°49’11.00”W 

PPL01 Unnamed pond, near Lac Sauriol 45°58’34.40”N 76°49’25.20”W 

CGL01 Lac Vert 46°3’9.70”N 76°52’0.30”W 

 



Supplementary Table 2 Q-ICP-MS instrument (ThermoFisher Scientific iCAP-Q) operating 

and acquisition parameters used in the UT and TCD Setups 

  University of Tübingen (UT) Setup University of Dublin, Trinity College (TCD) Setup 

  Instrument conditions 

Plasma power 1550 W 1550-1560 W 

Nebulizer gas flow 1.029-1.054 L min-1 1.139-1.171 L min-1 

Auxiliary gas flow 0.8 L min-1 0.8 L min-1 

Cool gas flow 14 L min-1 14 L min-1 

Interface 
Ni sample and skimmer cones; 3.5 mm high 

matrix skimmer insert 

Ni sample and skimmer cones; 3.0 mm ± high 

sensitivity skimmer insert 

Measurement mode STD STD or STDS 

 Sample introduction 

Autosampler Elemental Scientific (ESI) SC-2 DX Elemental Scientific (ESI) SC-2 DX 

Sample uptake ESI Fast system + 4 mL Teflon loop ESI microFast syringe + 1.5 or 2.0 mL Teflon loop 

Injection On-board peristaltic pump at 35 rpm On-board peristaltic pump at 28 rpm 

Introduction 

PFA nebulizer (~0.4 mL min-1; 0.25 mm inner 

diameter inlet line); quartz cyclonic spray chamber 

cooled at 2.7 °C 

PFA nebulizer (~0.4 mL min-1; 0.25 mm inner 

diameter inlet line); quartz cyclonic spray chamber 

cooled at 2.7 °C 

 Acquisition parameters 

Resolution High: 39K, 23Na, 24,25Mg, 44Ca); normal: all others High: 39K, 23Na, 24,25Mg, 44Ca; normal: all others 

Points per peak 3 3 

Dwell times 20-40 ms 20-40 ms 

Sweeps 28 35 

Runs 7 4 

 



Supplementary Table 3 Analyte isotopes, interference corrections, calibration values for W-2a 

with comparison to literature abundances, and mean background equivalent concentrations 

(BEC) 

   Calibration information (W-2a) BEC 

Analyte Isotope Interfer. Corr. unit Method Literature %bias unit UT TCD 

Na 23 – µg g-1 16320 – – ng g-1 0.50 12 

Mg 25,26 – “ 38410 – – “ 0.10 0.29 

K 39 – “ 5200 – – “ 37 35 

Ca 44 – “ 77620 – – “ 3.4 13.3 

Int. Std. Li 6 Natural Li – – – – – – – 

Li 7 Int. Std. Li ng g-1 9158 9210 ± 190 -0.6 fg g-1 183200 118100 

Be 9 – “ 617.5 672 ± 48 -8.1 “ 130 143 

Rb 85 – “ 19803 20230 ± 270 -2.1 “ 230 1351 

Sr 86 – “ 194800 195400 ± 1600 -0.3 “ 21100 27044 

Y 89 – “ 20113 21820 ± 330 -7.8 “ 22 108 

Zr 90  “ 87866 93300 ± 1400 -5.8 “ 106 1360 

Nb 93 – “ 7275 7510 ± 150 -3.1 “ 21 98 

Mo 98 – “ 423 465 ± 30 -9.0 “ 192 530 

Int. Std. Rh 103 – – – – – – – – 

Cd 111 MoO+ “ 77 74 ± 14 4.1 “ 103 96 

Int. Std. In 115 – – – – – – – – 

Sn 120 – “ 1950 1920 ± 120 1.6 “ 435 2800 

Sb 121 – “ 800 809 ± 69 -1.1 “ 82 810 

Cs 133 – “ 888 915 ± 16 -3.0 “ 18 95 

Ba 135 – “ 169700 172800 ± 1900 -1.8 “ 814 4604 

La 139 – “ 10521 10630 ± 120 -1.0 “ 11 124 

Ce 140 – “ 23216 23210 ± 170 0.0 “ 20 212 

Pr 141 – “ 3025 3018 ± 33 0.2 “ 9 34 

Nd 146 – “ 12911 13090 ± 120 -1.4 “ 43 126 

Sm 149 – “ 3266 3300 ± 130 -1.0 “ 35 51 

Eu 151 BaO+ “ 1094 1091 ± 11 0.3 “ 13 286 

Gd 160 Dy+, NdO+, SmO+ “ 3708 3713 ± 39 -0.1 “ 32 46 

Tb 159 NdO+ “ 615 627 ± 30 -1.9 “ 7 9 

Dy 161 NdO+, SmO+ “ 3808 3806 ± 29 0.1 “ 36 45 

Ho 165 SmO+ “ 803.3 790.8 ± 6.1 1.6 “ 10 9 

Er 167 NdO+, SmO+, EuO+ “ 2222 2208 ± 25 0.6 “ 27 29 

Tm 169 SmO+, EuO+ “ 327 331.5 ± 6.4 -1.4 “ 6 6 

Yb 172 GdO+ “ 2058 2054 ± 16 0.2 “ 27 28 

Lu 175 GdO+, TbO+ “ 301 309.0 ± 3.4 -2.6 “ 6 8 

Hf 178 EuO+, GdO+, TbO+ “ 2356 2444 ± 41 -3.6 “ 25 122 

Ta 181 DyO+, HoO+ “ 454 489 ± 14 -7.2 “ 15 21 

W 184 ErO+ “ 260 290 ± 50 -10.3 “ 113 1080 

Int. Std. Re 187 – – – – – – – – 

Tl 205 – “ 94 104 ± 13 -9.6 “ 16 192 

Pb 206+207+208 – “ 7527 7830 ± 190 -3.9 “ 63 6730 

Int. Std. Bi 209 – – – – – – – – 

Th 232 – “ 2104 2179 ± 31 -3.4 “ 10 30 

Int. Std. U 235 Natural U – – – – – – – 

U 238 Int. Std. Li “ 505 504.8 ± 7.0 0.0 “ 12 300 

 



Supplementary Table 4 GeoPTTM proficiency testing scheme results submitted (xi) for rounds GeoPT43, GeoPT44, and GeoPT45 by 

UT compared to the resultant GeoPTTM consensus values (xpt; assigned or provisional*), total number of results used to formulate the 

consensus value (n), and z-scores for the submitted results 

  GeoPT43 GeoPT44 GeoPT45 

Analyte unit 
UT result 

(xi) 

Consensus 

Value (xpt) 
n z-score 

UT result 

(xi) 

Consensus 

Value (xpt) 
n z-score 

UT result 

(xi) 

Consensus 

Value (xpt) 
n z-score 

Li µg g-1 13.03 12.94* 31 0.13 7.618 7.785 28 -0.37 40.64 41.90 32 -0.66 

Be “ 1.06 1.070 32 -0.12 0.767 0.7673 30 -0.01 2.98 2.927* 35 0.27 

Rb “ 25.255 25.28 70 -0.02 16.63 16.50 61 0.15 93.07 90.20 74 0.78 

Sr “ 402.0 407.23 80 0.4 290.6 289.8 74 0.08 89.65 89.33 83 0.09 

Y “ 28.43 30.00 75 -1.09 29.64 31.40 65 -1.18 18.98 20.05 76 -1.04 

Zr “ 192.60 199.0 76 -0.89 21.27 22.50 62 -1.09 451.48 436.5* 82 1.07 

Nb “ 17.93 17.42 68 0.56 1.608 1.506 44 0.9 10.83 10.70 71 0.22 

Mo “ 3.351 3.200 45 0.7 8.249 7.730 46 1.14 14.54 13.34 58 1.66 

Cd “ – – – – 1.333 2.630 34 -7.13 – – – – 

Sn “ 20.48 18.15* 42 2.48 0.344 0.3180* 23 0.86 2.178 1.885* 44 2.48 

Sb “ 0.078 0.085* 22 -0.71 1.067 1.110 31 -0.49 12.93 13.21 44 -0.39 

Cs “ 0.461 0.4624 38 -0.03 1.042 1.060 41 -0.21 8.771 8.508 53 0.53 

Ba “ 337.10 341.6 81 -0.4 58.2 60.02 68 -0.7 1347.6 1302 85 1.29 

La “ 26.173 26.93 68 -0.58 17.85 18.30 61 -0.48 53.57 52.86 76 0.31 

Ce “ 59.211 59.51 71 -0.11 22.46 23.25 59 -0.68 97.43 93.23 74 1.12 

Pr “ 7.832 7.750 49 0.18 4.114 4.080 44 0.13 9.836 9.748 50 0.16 

Nd “ 32.431 32.76 66 -0.21 17.27 17.66 55 -0.43 30.63 30.30 68 0.02 

Sm “ 8.401 8.634 58 -0.47 3.766 3.889 50 -0.48 4.776 4.861 54 -0.28 

Eu “ 2.164 2.203 50 -0.25 0.912 0.9416 46 -0.39 0.797 0.8730 47 -1.07 

Gd “ 7.007 7.260 51 -0.59 4.63 4.845 46 -0.7 3.422 3.564 50 -0.6 

Tb “ 1.067 1.084 49 -0.2 0.693 0.7134 45 -0.34 0.538 0.5500 47 -0.25 

Dy “ 6.034 6.100 51 -0.18 4.101 4.380 47 -0.99 3.172 3.240 51 -0.31 

Ho “ 1.166 1.164 48 0.02 0.874 0.8880 45 -0.19 0.678 0.6850 46 -0.12 

Er “ 2.998 3.059 49 -0.3 2.317 2.450 46 -0.78 1.935 1.978 47 -0.3 

Tm “ 0.416 0.4138 44 0.06 0.328 0.3385 42 -0.33 0.301 0.3100 43 -0.3 

Yb “ 2.537 2.491 52 0.26 2.007 2.061 50 -0.37 2.016 2.095 54 -0.53 

Lu “ 0.353 0.3651* 49 -0.36 0.292 0.3100 44 -0.61 0.311 0.3320 46 -0.67 

Hf “ 4.902 5.100 53 -0.62 0.444 0.5000 36 -1.26 11.08 11.75 51 -1.03 

Ta “ 1.096 1.120 44 -0.27 0.099 0.1053 32 -0.53 0.733 0.7706 41 -0.59 

W “ 0.397 0.4380* 27 -1.03 0.234 0.2540* 23 -0.8 70.995 76.79 50 -1.81 

Tl “ 0.166 0.1641 24 0.11 0.418 0.4140 28 0.11 8.056 8.110 41 -0.11 

Pb “ 12.908 14.00 68 -1.45 4.611 4.890* 55 -0.91 8.335 8.756 70 -0.83 

Th “ 2.816 3.095 58 -1.34 1.14 1.210 49 -0.74 9.836 10.10 67 -0.46 

U “ 0.636 0.6460 53 -0.18 3.952 3.961 54 -0.03 3.399 3.346 60 0.24 

Notes: Rows coloured based on the z-scores, where |z|<1 are green, 1<|z|≤2 are yellow, 2<|z|≤3 are orange, and |z|>3 are red. *=Provisional values 



Supplementary Table 5 Per-bottle and physical mixture (k=7) SLRS-6 element abundances (Na, Mg, K, Ca in ng g-1, all others in pg g-

1) along with selected anomaly and mass ratios determined with the UT Setup 

 
 Bottle #504 

(n=3) 

Bottle #505 

(n=3) 

Bottle #507 

(n=3) 

Bottle #508 

(n=3) 

Bottle #509 

(n=3) 

Bottle #510 

(n=3) 

SLRS-6 Mix  

(n=3) 

 Unit mean 2RSD mean 2RSD mean 2RSD mean 2RSD mean 2RSD mean 2RSD mean 2RSD 

Na ng g-1 2630 2.2 2630 1.7 2648 1.4 2623 0.6 2638 1.7 2643 1.5 2610 0.3 

Mg “ 2126 2.6 2121 2.1 2127 0.5 2120 0.2 2127 1.2 2139 2.3 2130 0.8 

K “ 634 1.2 631 2.0 640 4.3 634 2.7 640 5.0 641 2.6 625 1.2 

Ca “ 8656 3.4 8628 1.7 8701 2.1 8642 0.9 8708 2.9 8746 2.0 8673 0.7 

Li pg g-1 549 0.2 548 0.7 548 1.0 547 0.5 547 0.7 547 1.2 548 0.2 

Be “ 7.69 4.8 7.53 4.7 7.49 1.5 7.26 8.0 7.34 2.2 7.51 3.4 7.51 4.6 

Rb “ 1415 1.1 1408 1.1 1417 2.2 1410 0.7 1420 0.7 1418 0.5 1414 0.7 

Sr “ 39905 0.2 39670 0.5 39900 2.3 39860 1.3 39990 1.7 39950 1.0 39670 0.7 

Y “ 129.8 1.0 128.5 0.7 129.3 2.0 129.1 0.4 129.3 0.5 129.0 0.4 129.1 1.1 

Zr “ 67.0 4.0 65.5 2.7 66.3 2.0 66.4 4.1 65.5 1.7 66.9 2.8 67.0 1.7 

Nb “ 2.60 5.4 2.57 2.1 2.64 1.3 2.63 0.9 2.60 2.4 2.61 5.8 2.58 2.3 

Mo “ 195.3 2.9 194.3 1.9 195.2 0.5 194.8 1.1 194.9 1.0 194.8 3.4 195.6 0.9 

Cd “ 5.6 9.7 5.5 14 5.7 6.4 5.5 11 5.5 17 5.5 18 5.2 1.4 

Sn “ 4.5 3.6 4.7 14 4.6 15 4.6 5.9 4.6 13 4.6 3.5 4.3 0.4 

Sb “ 356 1.9 358 0.3 358 1.0 357 0.8 355 0.4 355 0.5 357 0.5 

Cs “ 4.71 1.1 4.69 2.3 4.64 1.7 4.62 3.7 4.66 1.6 4.63 2.9 4.65 1.6 

Ba “ 14250 0.5 14200 0.6 14230 0.6 14210 0.1 14220 0.8 14200 0.4 14220 0.3 

La “ 251.6 1.7 250.0 0.0 250.8 0.6 249.6 0.9 250.0 1.1 250.0 1.1 250.5 0.7 

Ce “ 301.6 2.0 300.1 0.5 301.1 0.5 299.0 0.5 299.5 0.6 300.0 1.7 300.0 0.2 

Pr “ 60.87 0.6 60.60 1.0 60.62 0.6 60.55 0.6 60.53 0.6 60.48 0.7 60.31 0.9 

Nd “ 230.9 0.4 229.8 0.5 230.6 0.7 230.5 1.3 230.0 0.1 229.6 0.9 230.4 0.6 

Sm “ 38.58 2.2 38.58 0.4 38.61 0.9 38.55 0.8 38.46 1.3 38.63 2.9 38.37 2.4 

Eu “ 6.63 3.3 6.73 2.8 6.64 2.4 6.70 3.3 6.68 1.7 6.62 2.1 6.59 1.3 

Gd “ 30.40 2.3 30.53 0.7 30.41 2.2 30.35 1.3 30.63 1.9 30.43 0.9 30.37 2.2 



Tb “ 3.931 1.9 3.910 3.6 3.889 2.3 3.908 0.9 3.897 1.5 3.925 0.8 3.948 0.2 

Dy “ 21.16 2.2 21.35 1.0 20.96 1.1 20.95 0.6 21.17 2.6 21.06 1.5 20.86 3.1 

Ho “ 4.345 3.5 4.294 2.0 4.297 2.1 4.337 1.6 4.278 3.2 4.283 0.8 4.304 2.4 

Er “ 11.97 0.1 11.84 1.4 11.88 1.4 11.90 3.3 11.92 2.8 11.88 3.3 12.05 1.4 

Tm “ 1.717 3.9 1.720 0.8 1.714 1.7 1.732 2.9 1.723 1.7 1.735 2.8 1.702 2.3 

Yb “ 11.13 3.3 11.08 1.3 11.29 0.7 11.19 1.4 11.15 0.5 11.10 2.7 11.21 1.0 

Lu “ 1.762 1.8 1.761 1.4 1.742 1.3 1.746 0.6 1.746 1.1 1.775 2.0 1.759 0.5 

Hf “ 2.02 1.8 2.02 1.8 2.07 0.7 2.04 2.6 2.00 2.3 2.02 2.7 2.04 2.9 

Ta “ 0.064 7.2 0.064 9.1 0.064 6.8 0.061 14 0.065 2.7 0.066 10 0.059 17 

W “ 11.34 1.3 11.35 1.4 11.19 1.0 11.24 1.7 11.07 2.5 11.23 2.9 11.16 2.9 

Tl “ 7.02 0.9 7.05 4.2 6.96 2.0 6.98 1.2 6.99 1.3 6.96 0.8 6.96 2.4 

Pb “ 154 0.8 154 0.8 154 0.9 154 0.6 153 0.8 154 0.6 154 0.6 

Th “ 21.4 6.8 21.3 6.4 21.4 7.6 21.3 5.8 21.2 5.3 21.0 4.8 20.4 1.1 

U “ 69.8 0.3 69.8 0.1 69.5 0.3 69.5 0.4 69.3 1.1 69.4 0.9 69.1 0.6 

ΣREE “ 977 1.0 972 0.2 975 0.4 971 0.7 972 0.5 972 0.9 972 0.2 

Prn/Ybn - 2.10 3.9 2.10 1.4 2.06 0.3 2.08 0.9 2.09 1.1 2.09 2.9 2.07 0.9 

Lan/Lan* - 1.023 1.0 1.020 2.4 1.029 1.6 1.027 4.6 1.025 1.3 1.025 3.8 1.043 1.1 

Cen/Cen* - 0.575 0.6 0.574 1.5 0.578 1.5 0.575 2.5 0.575 1.2 0.576 3.0 0.582 0.8 

Eun/Eun* - 0.846 4.2 0.859 2.0 0.849 2.0 0.855 3.4 0.855 0.5 0.843 0.5 0.842 1.4 

Gdn/Gdn* - 1.073 2.4 1.082 1.9 1.081 1.6 1.076 1.5 1.089 3.3 1.075 1.5 1.071 1.2 

Y/Ho - 29.89 3.8 29.93 2.7 30.08 2.0 29.77 1.8 30.22 3.5 30.13 1.1 30.01 1.0 

Zr/Hf - 33.22 2.3 32.49 2.8 32.09 2.7 32.56 4.1 32.70 0.8 33.10 5.0 32.83 2.3 

Nb/Ta - 40.3 7.7 40.2 7.6 41.0 5.4 43.0 13 40.0 4.1 39.8 16 43.9 7.3 

Th/U - 0.31 6.8 0.31 6.3 0.31 7.8 0.31 5.9 0.31 5.0 0.30 4.1 0.296 0.6 

Mo/W - 17.22 2.4 17.11 0.9 17.44 1.4 17.34 1.8 17.62 2.6 17.34 6.4 17.53 1.9 

Note: REEn/REEn* calculated from normalized concentrations as described in Section 4.6.1 of the main text. 

 



Supplementary Table 6 SLRS-6 element abundances (Na, Mg, K, Ca in ng g-1, all others in pg 

g-1) along with selected anomaly and mass ratios determined with the UT Setup at 10x dilution, 

and comparison to compiled UT-TCD Setup values determined at 1.1x dilution 

 

 
SLRS-6 10x dilution 

k=7, n=22 

%bias relative to 

compiled UT-TCD 

values at 1.1x dilution 

 Unit mean 2s 2RSD  

Na ng g-1 2830 65 2.3 3.8 

Mg “ 2155 154 7.1 0.7 

K “ 710 30 4.1 9.5 

Ca “ 8760 88 1.0 0.1 

Li pg g-1 554 18 3.2 0.6 

Be “ 6.44 0.91 14 -11 

Rb “ 1440 13 0.9 0.4 

Sr “ 40470 350 0.9 0.1 

Y “ 130.4 2.2 1.7 -0.2 

Zr “ 66.4 2.4 3.6 0.9 

Nb “ 2.76 0.36 13 5.9 

Mo “ 197.7 7.6 3.9 -0.4 

Cd “ bdl – – – 

Sn “ bdl – – – 

Sb “ 326 4 1.2 -4.1 

Cs “ 4.70 0.25 5.4 0.2 

Ba “ 14380 128 0.9 0.5 

La “ 252.9 3.1 1.2 0.9 

Ce “ 302.6 5.6 1.9 0.8 

Pr “ 61.12 1.31 2.1 0.7 

Nd “ 233.0 4.3 1.9 1.1 

Sm “ 39.30 1.52 3.9 1.8 

Eu “ 6.78 0.39 5.7 1.3 

Gd “ 30.46 1.57 5.1 0.4 

Tb “ 3.944 0.200 5.1 0.7 

Dy “ 21.17 1.13 5.4 0.3 

Ho “ 4.377 0.233 5.3 1.5 

Er “ 11.81 0.94 7.9 -0.8 

Tm “ 1.747 0.116 6.6 1.5 



Yb “ 11.27 0.66 5.9 1.0 

Lu “ 1.781 0.197 11 1.4 

Hf “ 2.01 0.46 23 0.5 

Ta “ bdl – – – 

W “ 10.97 1.34 12 -2.5 

Tl “ 7.13 0.41 5.8 -3.1 

Pb “ 158 3 1.7 -4.7 

Th “ 22.2 0.9 4.0 12 

U “ 68.6 1.2 1.8 -2.6 

ΣREE “ 982 14 1.5 0.9 

Prn/Ybn - 2.08 0.13 6.1 -0.2 

Lan/Lan* - 1.034 0.060 5.8 1.0 

Cen/Cen* - 0.577 0.019 3.2 0.5 

Eun/Eun* - 0.853 0.053 6.2 0.0 

Gdn/Gdn* - 1.067 0.066 6.2 -0.6 

Y/Ho - 29.80 1.62 5.5 -1.6 

Zr/Hf - 33.34 6.87 21 1.5 

Nb/Ta - – – – – 

Th/U - 0.32 0.01 3.1 16 

Mo/W - 18.11 2.96 16 2.6 

Note: REEn/REEn* calculated from normalized concentrations as described in Section 4.6.1 of the main text; bdl = 

below detection limit; Compiled UT-TCD values in Table 1 of the main text. 

 



Supplementary Table 7 ORB lake and pond element abundances (Na, Mg, K, Ca in ng g-1, all 

others in pg g-1) along with selected anomaly and mass ratios 

  Lakes and pond water 

 Unit CTL01 SLL01 PPL01 CGL01 

Na ng g-1 940 670 690 640 

Mg “ 1750 960 1190 1190 

K “ 520 430 430 520 

Ca “ 12580 6720 9410 12770 

Li pg g-1 203 116 288 171 

Be “ 0.9 1.1 2.4 0.6 

Rb “ 1210 1150 1760 1520 

Sr “ 64220 48210 102370 77460 

Y “ 7.0 15.3 28.2 7.5 

Zr “ 1.2 1.6 2.9 0.6 

Nb “ bdl bdl bdl bdl 

Mo “ 538 90 121 167 

Cd “ 0.6 1.1 1.3 0.4 

Sn “ 12.0 9.8 37.3 7.6 

Sb “ 46.3 58.7 172 54.3 

Cs “ 4.44 4.85 9.55 8.82 

Ba “ 9010 10050 11460 12270 

La “ 7.484 20.07 69.77 7.399 

Ce “ 5.504 9.810 53.71 5.374 

Pr “ 1.787 4.367 13.55 1.670 

Nd “ 6.991 17.22 49.28 6.508 

Sm “ 1.202 2.763 7.225 1.122 

Eu “ 0.18 0.39 1.42 0.22 

Gd “ 0.942 2.245 5.552 1.024 

Tb “ 0.130 0.288 0.717 0.155 

Dy “ 0.808 1.741 3.877 0.855 

Ho “ 0.213 0.422 0.812 0.211 

Er “ 0.673 1.323 2.395 0.675 

Tm “ 0.106 0.217 0.351 0.104 

Yb “ 0.803 1.592 2.423 0.742 

Lu “ 0.143 0.289 0.395 0.127 

Hf “ bdl bdl bdl bdl 



Ta “ bdl bdl bdl bdl 

W “ 2.69 1.22 2.33 1.93 

Tl “ 2.91 3.52 8.56 3.53 

Pb “ 5.0 4.6 52.5 0.7 

Th “ 0.5 1.8 1.8 0.4 

U “ 24.8 9.36 22.1 42.9 

ΣREE “ 27 63 212 26 

Prn/Ybn - 0.86 1.05 2.15 0.87 

Lan/Lan* - 1.103 1.230 1.170 1.156 

Cen/Cen* - 0.369 0.271 0.441 0.383 

Eun/Eun* - 0.731 0.694 0.976 0.862 

Gdn/Gdn* - 1.024 1.089 1.065 1.013 

Y/Ho - 32.88 36.19 34.68 35.64 

Zr/Hf - – – – – 

Nb/Ta - – – – – 

Th/U - 0.02 0.19 0.08 0.01 

Mo/W - 200.2 73.4 51.6 86.2 

Notes: REEn/REEn* calculated from normalized concentrations as described in Section 4.6.1 of the main text; bdl = 

below detection limit. 
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