37 research outputs found

    Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology

    Adults with autism overestimate the volatility of the sensory environment.

    Get PDF
    Insistence on sameness and intolerance of change are among the diagnostic criteria for autism spectrum disorder (ASD), but little research has addressed how people with ASD represent and respond to environmental change. Here, behavioral and pupillometric measurements indicated that adults with ASD are less surprised than neurotypical adults when their expectations are violated, and decreased surprise is predictive of greater symptom severity. A hierarchical Bayesian model of learning suggested that in ASD, a tendency to overlearn about volatility in the face of environmental change drives a corresponding reduction in learning about probabilistically aberrant events, thus putatively rendering these events less surprising. Participant-specific modeled estimates of surprise about environmental conditions were linked to pupil size in the ASD group, thus suggesting heightened noradrenergic responsivity in line with compromised neural gain. This study offers insights into the behavioral, algorithmic and physiological mechanisms underlying responses to environmental volatility in ASD

    Cerebellar Asymmetry and Cortical Connectivity in Monozygotic Twins with Discordant Handedness

    Get PDF
    Handedness differentiates patterns of neural asymmetry and interhemispheric connectivity in cortical systems that underpin manual and language functions. Contemporary models of cerebellar function incorporate complex motor behaviour and higher-order cognition, expanding upon earlier, traditional associations between the cerebellum and motor control. Structural MRI defined cerebellar volume asymmetries and correlations with corpus callosum (CC) size were compared in 19 pairs of adult female monozygotic twins strongly discordant for handedness (MZHd). Volume and asymmetry of cerebellar lobules were obtained using automated parcellation.CC area and regional widths were obtained from midsagittal planimetric measurements. Within the cerebellum and CC, neurofunctional distinctions were drawn between motor and higher-order cognitive systems. Relationships amongst regional cerebellar asymmetry and cortical connectivity (as indicated by CC widths) were investigated. Interactions between hemisphere and handedness in the anterior cerebellum were due to a larger right-greater-than-left hemispheric asymmetry in right-handed (RH) compared to left-handed (LH) twins. In LH twins only, anterior cerebellar lobule volumes (IV, V) for motor control were associated with CC size, particularly in callosal regions associated with motor cortex connectivity. Superior posterior cerebellar lobule volumes (VI, Crus I, Crus II, VIIb) showed no correlation with CC size in either handedness group. These novel results reflected distinct patterns of cerebellar-cortical relationships delineated by specific CC regions and an anterior-posterior cerebellar topographical mapping. Hence, anterior cerebellar asymmetry may contribute to the greater degree of bilateral cortical organisation of frontal motor function in LH individuals

    Letters to the Editor: The cerebellum and Parkinson's disease

    No full text

    The anterior cingulate cortex: monitoring the outcomes of others' decisions.

    No full text
    The ability to attribute mental states to others and understand the basis of their decisions is essential for human social interaction. A controversial theory states that this is achieved by simulating another's information processing in one's own neural circuits. The anterior cingulate cortex (ACC) is known to play an important role in the registration of discrepancies between the predicted and actual outcomes of decisions (prediction errors).When positive and negative feedback fails altogether, the failure may also signal errors in the prediction that the outcome of that decision would be informative and guide future decisions. Does the ACC signal that an outcome is unexpectedly uninformative? When an outcome directed to others is uninformative, do we understand their mental states by simulating them in the circuits of the ACC in our own brain? The aim of our study was to test for these two possibilities in the human brain with event-related fMRI. We tested whether the ACC processes errors in the prediction of informative feedback and whether the ACC is also activated when scanned subjects process the same outcomes of another's decisions. We show that each is processed by a separate subregion of the ACC

    Primate homologs of mouse cortico-striatal circuits

    No full text
    With the increasing necessity of animal models in biomedical research, there is a vital need to harmonise findings across species by establishing similarities and differences in rodent and primate neuroanatomy. Using connectivity fingerprint matching, we compared cortico-striatal circuits across humans, non-human primates, and mice using resting-state fMRI data in all species. Our results suggest that the connectivity patterns for the nucleus accumbens and cortico-striatal motor circuits (posterior/lateral putamen) were conserved across species, making them reliable targets for cross-species comparisons. However, a large number of human and macaque striatal voxels were not matched to any mouse cortico-striatal circuit (mouse->human: 85% unassigned; mouse->macaque 69% unassigned; macaque->human; 31% unassigned). These unassigned voxels were localised to the caudate nucleus and anterior putamen, overlapping with executive function and social/language regions of the striatum and connected to prefrontal-projecting cerebellar lobules and anterior prefrontal cortex, forming circuits that seem to be unique for non-human primates and humans

    Improving the quality of combined EEG-TMS neural recordings: Introducing the coil spacer

    No full text
    In the last decade, interest in combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) approaches has grown substantially. Aside from the obvious artifacts induced by the magnetic pulses themselves, separate and more sinister signal disturbances arise as a result of contact between the TMS coil and EEG electrodes.status: publishe
    corecore