398 research outputs found

    Magnetic Helicity Conservation and Astrophysical Dynamos

    Get PDF
    We construct a magnetic helicity conserving dynamo theory which incorporates a calculated magnetic helicity current. In this model the fluid helicity plays a small role in large scale magnetic field generation. Instead, the dynamo process is dominated by a new quantity, derived from asymmetries in the second derivative of the velocity correlation function, closely related to the `twist and fold' dynamo model. The turbulent damping term is, as expected, almost unchanged. Numerical simulations with a spatially constant fluid helicity and vanishing resistivity are not expected to generate large scale fields in equipartition with the turbulent energy density. The prospects for driving a fast dynamo under these circumstances are uncertain, but if it is possible, then the field must be largely force-free. On the other hand, there is an efficient analog to the α−Ω\alpha-\Omega dynamo. Systems whose turbulence is driven by some anisotropic local instability in a shearing flow, like real stars and accretion disks, and some computer simulations, may successfully drive the generation of strong large scale magnetic fields, provided that ∂rΩ>0\partial_r\Omega>0. We show that this criterion is usually satisfied. Such dynamos will include a persistent, spatially coherent vertical magnetic helicity current with the same sign as −∂rΩ-\partial_r\Omega, that is, positive for an accretion disk and negative for the Sun. We comment on the role of random magnetic helicity currents in storing turbulent energy in a disordered magnetic field, which will generate an equipartition, disordered field in a turbulent medium, and also a declining long wavelength tail to the power spectrum. As a result, calculations of the galactic `seed' field are largely irrelevant.Comment: 28 pages, accepted by The Astrophysical Journa

    An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics

    Get PDF
    A third order shock-capturing numerical scheme for three-dimensional special relativistic magnetohydrodynamics (3-D RMHD) is presented and validated against several numerical tests. The simple and efficient central scheme described in Paper I (Del Zanna and Bucciantini, Astron. Astrophys., 390, 1177--1186, 2002) for relativistic hydrodynamics is here extended to the magnetic case by following the strategies prescribed for classical MHD by Londrillo and Del Zanna (Astrophys. J., 530, 508--524, 2000). The scheme avoids completely spectral decomposition into characteristic waves, computationally expensive and subject to many degenerate cases in the magnetic case, while it makes use of a two-speed Riemann solver that just require the knowledge of the two local fast magnetosonic velocities. Moreover, the onset of spurious magnetic monopoles, which is a typical problem for multi-dimensional MHD upwind codes, is prevented by properly taking into account the solenoidal constraint and the specific antisymmetric nature of the induction equation. Finally, the extension to generalized orthogonal curvilinear coordinate systems is included, thus the scheme is ready to incorporate general relativistic (GRMHD) effects.Comment: 18 pages, Latex, 8 Encapsulated PostScript figures, accepted for publication in A&

    A high-order Godunov scheme for global 3D MHD accretion disks simulations. I. The linear growth regime of the magneto-rotational instability

    Get PDF
    We employ the PLUTO code for computational astrophysics to assess and compare the validity of different numerical algorithms on simulations of the magneto-rotational instability in 3D accretion disks. In particular we stress on the importance of using a consistent upwind reconstruction of the electro-motive force (EMF) when using the constrained transport (CT) method to avoid the onset of numerical instabilities. We show that the electro-motive force (EMF) reconstruction in the classical constrained transport (CT) method for Godunov schemes drives a numerical instability. The well-studied linear growth of magneto-rotational instability (MRI) is used as a benchmark for an inter-code comparison of PLUTO and ZeusMP. We reproduce the analytical results for linear MRI growth in 3D global MHD simulations and present a robust and accurate Godunov code which can be used for 3D accretion disk simulations in curvilinear coordinate systems

    An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. Hydrodynamics

    Get PDF
    Multidimensional shock-capturing numerical schemes for special relativistic hydrodynamics (RHD) are computationally more expensive than their correspondent Euler versions, due to the nonlinear relations between conservative and primitive variables and to the consequent complexity of the Jacobian matrices (needed for the spectral decomposition in most of the approximate Riemann solvers of common use). Here an efficient and easy-to-implement three-dimensional (3-D) shock-capturing scheme for ideal RHD is presented. Based on the algorithms developed by P. Londrillo and L. Del Zanna ({\em Astrophys. J.} 530, 508-524, 2000) for the non-relativistic magnetohydrodynamic (MHD) case, and having in mind its relativistic MHD extension (to appear in a forthcoming paper), the scheme uses high order (third) Convex Essentially Non-Oscillatory (CENO) finite difference interpolation routines and central-type averaged Riemann solvers, which do not make use of time-consuming characteristic decomposition. The scheme is very efficient and robust, and it gives results comparable to those obtained with more sophisticated algorithms, even in ultrarelativistic multidimensional test problems.Comment: 11 pages, Latex, 9 Encapsulated PostScript figures, accepted for publication in A&

    Higher order finite difference schemes for the magnetic induction equations

    Get PDF
    We describe high order accurate and stable finite difference schemes for the initial-boundary value problem associated with the magnetic induction equations. These equations model the evolution of a magnetic field due to a given velocity field. The finite difference schemes are based on Summation by Parts (SBP) operators for spatial derivatives and a Simultaneous Approximation Term (SAT) technique for imposing boundary conditions. We present various numerical experiments that demonstrate both the stability as well as high order of accuracy of the schemes.Comment: 20 page

    Orientations of the lamellar phase of block copolymer melts under oscillatory shear flow

    Full text link
    We develop a theory to describe the reorientation phenomena in the lamellar phase of block copolymer melt under reciprocating shear flow. We show that similar to the steady-shear, the oscillating flow anisotropically suppresses fluctuations and gives rise to the parallel-perpendicular orientation transition. The experimentally observed high-frequency reverse transition is explained in terms of interaction between the melt and the shear-cell walls.Comment: RevTex, 3 pages, 1 figure, submitted to PR

    Diffusion in supersonic, turbulent, compressible flows

    Full text link
    We investigate diffusion in supersonic, turbulent, compressible flows. Supersonic turbulence can be characterized as network of interacting shocks. We consider flows with different rms Mach numbers and where energy necessary to maintain dynamical equilibrium is inserted at different spatial scales. We find that turbulent transport exhibits super-diffusive behavior due to induced bulk motions. In a comoving reference frame, however, diffusion behaves normal and can be described by mixing length theory extended into the supersonic regime.Comment: 11 pages, incl. 5 figures, accepted for publication in Physical Review E (a high-resolution version is available at http://www.aip.de./~ralf/Publications/p21.abstract.html
    • 

    corecore