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Preface

This is a thesis for the degree of Philosophise Doctor, and consists of four research pa-
pers preceded by an introductory note. The introductory part describes the necessary
background material and summarises the papers. The research articles reported here, are
written in the course of last three years while being employed at Centre of Mathematics
for Applications, University of Oslo.
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Introduction

This thesis consists of four papers, and they are summarised in this introductory part. The
first part of the thesis deals with the induction equations, which is a submodel of ideal
magneto-hydrodynamics (MHD) equations. The equations of ideal MHD describe the
evolution of macroscopic plasmas, and arise in many other contexts in astrophysics, and
electrical and aerospace engineering. Being a non-strict hyperbolic system, the solution
structure of MHD equations is fairly complex.

Given the formidable difficulties of the full MHD system, we consider the magnetic
induction equations as a model. Since these equations appear as a sub-model in the
MHD equations, the design of stable and high-order accurate numerical schemes for the
induction equations can lead to the design of robust schemes for the non-linear MHD
equations. In first two papers (papers I-II), we design stable and high order accurate
finite difference schemes for initial-boundary value problems corresponding to the mag-
netic induction equations and magnetic induction equations with resistivity (sub-model
of MHD equations with resistivity) respectively. In paper-111, we consider Korteweg-de
Vries-Kawahara (Kawahara) equation, which is a form of the Korteweg-de Vries (KdV)
equation with an additional fifth order term. We considered both the semi-discrete as
well as fully-discrete schemes for the initial-boundary value problem corresponding to the
Kawahara equation. Convergence of both schemes has been shown in this paper. Finally,
in paper-IV, we consider semi-discrete first-order finite difference schemes for a nonlinear
degenerate convection-diffusion equations in one space dimension, and prove an L' error
estimate.

1.1 Hyperbolic Equations

Hyperbolic partial differential equations arise in a broad spectrum of disciplines where
wave motion or advective transport is important; gas dynamics, acoustics, elastodynamics,
optics, geophysics, and biomechanics, to name but a few. Specially, the second half
of the XXth century has seen enormous progress in the application of the techniques
of functional analysis to investigate in a mathematical rigorous way the properties of
solutions to nonlinear partial differential equations and systems appear in the different
branches of continuum physics. As a rule, functions vital for the considered problems are
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not smooth enough to satisfy these equations in the classical sense. Thus, there arises the
need to introduce a notion of a generalized solution and to develop theory and numerical
methods for constructiong these solutions.

1.1.1 Scalar conservation laws

Initial value problem for hyperbolic scalar conservation laws are partial differential equa-
tions of the following form:

w+ f(u)e =0, ulmo = uo. (1.1.1)

If we formally integrate equation (1.1.1) between two points x; and xg, we obtain

/: upde = — /: f(u)e de = f(u(ay, 1)) = f(u(@,t)).

Assuming that w« is sufficiently regular to allow us to take the derivative outside the
integral, we get
d [
dt J,,

This equation expresses conservation of the quantity measured by u in the sense that the
rate of change in the amount of u between z; and x5 is given by the difference in f(u)
evaluated at these points.

Assuming that the solution u is smooth, one can find u along the characteristics given
by @ =z + f'(uo(z0))t. It is well known that no matter how smooth the initial function
is, we cannot expect to be able to define classical solutions of nonlinear conservation laws
for all time. In this case we have to extend the concept of solutions in order to allow
discontinuities. Therefore we need to consider (1.1.1) in integral form. We consider test
functions in the space C°(R x [0, 00)) consisting of the smooth functions with compact
support in R x [0, 00).

u(z, t)de = f(u(z,t)) — fu(xg, t)). (1.1.2)

Definition 1.1.1. (Weak solution) A function u € L'(R x [0,00)) is a weak solution of
(1.1.1) if for any such test function ¢ € CX(R x [0,00)), we have

/j:} /Ooo(uﬁzst + f(u)¢,) dt do + /:: o(z,0)up(z) dz = 0. (1.1.3)

Observe in particular that a (regular) smooth solution is a weak solution as well. It is
now natural to ask what kind of discontinuities are compatible with (1.1.3)7 The precise
answer is the following: A discontinuity in « connecting two states u; and u, must travel
with a speed o given by the Rankine-Hugoniot condition

o(w —u,) = flw)— f(u).

Although in case of hyperbolic equations, due to the loss of regularity, it is necessary to
work with weak solutions but due to neglected physical (e.g., dissipative) mechanisms
weak solutions are not uniquely determined by their data. For these reasons attention
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focuses on finding a physically reasonable framework which incorporates discontinuous
solutions and ensures uniqueness and they are commonly referred to as “entropy con-
ditions”.

One of the most common entropy conditions is so-called viscous regularization, where
the scalar conservation law u; + f(u), = 0 is replaced by u; + f(u), = €uy,. The idea is
that the physical problem has some diffusion, and that the conservation law represents
a limit model when the diffusion is small. Based on this, one looks for solutions of the
conservation laws that are limits of the regularized equation when ¢ — 0. Choose a smooth
convex function n = n(u) and a nonnegative test function ¢ in C°(R x (0,00)). (Such a
test function will be supported away from the x-axis , and thus we get no contribution
from the initial data.) Then we find

0= // w + f(u)y — €ty (u)d da dt

// ¢dxdt—|—// w)u,d dx dt
// o= () (ue)?) & dt

- [[ s~ [[ wer doar

- e//n(u)% da;dt+e//n”(u)(um)%dmt

~ [ [+ atwio. + enénr) ot

I \/

where we first introduced ¢ such that

and subsequently used the convexity of 7, i.e., n° > 0. Interpreted in a distributional
sense we may write this as

o 0.
atn axq_ Nz~

If this is to hold as ¢ — 0, then

il g <0.
it T apd =Y

Definition 1.1.2. (Entropy inequality). A weak solution u satisfies the entropy in-
equality if for any convex function n with 7, f, = q.

/ / u)or + q(u)¢,) dr dt > 0, (1.1.4)

for all test functions ¢ € CP(R x (0,00)) with ¢(z,t) > 0 Va, 1.
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This weak entropy inequality chooses the physically relevant solution among all the
weak solutions.

For the scalar equation, one can show existence, uniqueness and continuous dependence
on data of the entropy solution when ug has bounded total variation (TV). Then we have
that TV (u) < TV (up). The viscous approximation u,, given by solving

Onue + Op f(ue) = €02ue,  Uclimo = ug, €>0 (1.1.5)

then converges to the entropy solution as € — 0. The proofs of stability rely on the
technique of “doubling of variables” due to Kruzkov, see for example [1] for an ac-
count. There is also an existence result for solutions in L* based on “compensated
compactness”.

1.1.2 Systems of conservation laws
We now consider the system of conservation laws
w+ f(u), =0, ul=e= up, (1.1.6)

where u and f are in R™. If the Jacobian f’(u) has only real eigenvalues Ay, - -, A\, also
called the characteristic speeds, the system is called hyperbolic, and if the eigenvalues are
distinct for any u, it is called strictly hyperbolic.

Linear hyperbolic equations

The easiest case of the hyperbolic conservation laws (1.1.6) is, when the flux function f
is linear, i.e.,
w + Au, =0, AeR™™. (1.1.7)

The equation (1.1.7) is called hyperbolic if A is diagonalizable with real eigenvalues.
For a linear hyperbolic PDE there exist eigenvalues Ay < --- < )\, and a complete set of
eigenvectors 71, - 7™ € R™ such that R = [r! | - -+ | ™] is non-singular. By multiplying
(1.1.7) with R~!, we can rewrite this linear system as

R 'wy+ R 'ARR 'u, = 0.

Introducing the so-called characteristic variables w(z,t) := R~ u(z,t) we can rewrite
the linear equation as

w; + Aw, = 0,

where A = diag(Aq, -+, \y). Using the characteristic variables, we can see that the linear
system decouples into m independent advection equations

wl + 0wl =0, p=12..m

Now we can solve the linear system (1.1.7) together with the initial condition u(z,0) =
ug(z). The solution consists of m “waves” travelling at characteristic speeds A,

u(z,t) = pr(x, t)rf = ng(.r — At)rP.
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Non-linear Systems

In the case of a linear hyperbolic system of m equations, we know that for a solution
there are at any point = exactly m waves passing by at different speeds, and we observe a
superposition of these waves. In the nonlinear case, these waves are constantly interacting
with each other, and in addition they deform separately. These problems cannot be solved
analytically in general.

An isolated discontinuity can be called a shock related to the characteristics field i if it
travels with speed o such that A\;(u,) < o < A\;(w;), and that either ¢ > A;(u) or o < X;(u)
on both sides for j # i. A contact discontinuity related to the characteristic field satisfies
Ai(w,) =0 = N\(w). If M(u).r;(u) = 0, where r; is the right eigenvector associated to \;,
a contact discontinuity is the only possibility. In that case we say that the characteristic
field 4 is linearly degenerate. If it is never the case, the characteristic field is genuinely
nonlinear. Other types of waves that occur in the solution of the Riemann problem of
(1.1.6) are rarefractions and compound waves containing over-or undercompressive shocks.
The latter only occurs if there are characteristic fields which are neither linearly degenerate
nor genuinely nonlinear.

1.2 Degenerate Convection-Diffusion Equations

In this section, we will consider nonlinear, possibly strongly degenerate, convection diffu-
sion equations of the form

{ut + f(w) = /)1<> (z,1) €I, (12.1)

u(0,z) = up(z), z €R,
where Il = R x (0,7) with 7" > 0 fixed. u(x,t) denotes the (scalar) unknown, uy(z) is
a given function of bounded variation, f(u) and A(u) are given locally smooth bounded
functions. Regarding A, the basic assumption is that A’(u) > 0 and thus (1.2.1) is a
strongly degenerate parabolic problem.

Convection-diffusion equations arise in a variety of applications, among others tur-
bulence, traffic flow, financial modelling and front propagation. Such equations also
constitute an important part of a system of equations describing two phase flow in oil
reservoirs [6] as well as a system of equations describing sedimentation processes used for
solid-liquid separation in industrial applications [4, 5]. When (1.2.1) is non-degenerate,
ie., A'(u) > 0, it is well known that (1.2.1) admits a unique classical solution [7]. This
contrasts with the case where (1.2.1) is allowed to degenerate at certain points, i.e., A’(u)
may vanish for some values of u. Solutions are then not necessarily smooth, and weak
solutions must be sought.

Definition 1.2.1. (Weak Solution). A function u(x,t) is called a weak solution if, for
all suitable test functions ¢, it satisfies

/R/O (ugy + f(u)dy + A(w)duy) dz dt + /]Ruo(:n)qb(x, 0)dz = 0. (1.2.2)
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The simplest examples of degenerate equations are perhaps provided by the porous
medium equation u; = (™)., m > 1 and the convective porous medium equation u; +
(u™)y = (U™) e, mym > 1, which both degenerate at u = 0. A striking manifestation of
this one-point degeneracy is finite speed of propagation. The reader who is interested in
an overview of the very extensive literature that exists on degenerate parabolic problems
is reffered to the papers [8, 9] and the references therein. We will from now on refer to
(1.2.1) as degenerate when A(u) is strictly increasing and strongly degenerate when
A(u) is merely non-decreasing.

In the strongly degenerate case there exist two numbers a and 3 such that A’(u) =0
on the interval [a, 5]. A simple example of a strongly degenerate equation is a hyperbolic
conservation law u; + f(u), = 0. Thus (1.2.1) must in general possess discontinuous
solutions. Furthermore, discontinuous solutions defined by an integral equality (1.2.2)
is not uniquely determind by their data. In fact, an additional condition - an entropy
condition is needed to single out the physically relevant weak solution.

Lemma 1.2.1. Suppose that A'(u) > « > 0 and let u(x,t) denote the unique classical
solution of the parabolic problem (1.2.1). Letn:R — R be a C? convex entropy function
and q,r the associated entropy fluxes satisfying the compatibility conditions

q'(u) =n'(u)f'(u), 7'(u) =1 (u)A'(w). (1.2.3)

Then for all suitable test functions ¢ > 0,

[ o+ atwyon + r(wins) dwdr =0
Proof. Multiply (1.2.1) by n/(u) and use the chain rule, we get

n(w)e ' (u) f'(w)ue = 7' (w) Au)ze

Using integration by parts, the compatibility conditions (1.2.3) and the convexity of 7 to
throw away the dissipative mechanisms, we obtain

0= // (n(u)s + n'(w) f(w)uy — n'(w) A(t)zs) dodt

”"

- / / (_”(“W — q(u) s + A'(w)ua(n” (u)uzo + n’(u)qsz)) d dt
(—n(u)@ —q(w)es + A'(u)y (u)(uz )’ — 7'(u)¢m)) dz dt

2 // (=n(u)pr — q(u)py — 1(1)ar)) dadl,

from which the lemma follows. O

In view of the previous lemma, we have the following inequality weakly:

N +4(w)e = (e <0,
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for all convex C? entropies 7 : R — R and corresponding fluxes ¢,r. By a limiting
argument, we can let n(u) — |u — k|, for any given k£ € R, and use ¢(u) = sign(u —
E)(f(u) — f(k)) and r(u) = |A(u) — A(k)|. We now introduce the following definition of
an entropy weak solution of (1.2.1):

Definition 1.2.2. A weak solution u(z,t) of (1.2.1) is called an entropy solution if, for
all real numbers k and suitable test functions ¢ > 0,

/ / (I — k1, + sign(u — k)(F(w) — F(E))w + |A(u) — A(K)|dy) dz dt > 0

For scalar conservation laws, the entropy framework (usually called entropy conditions)
was introduced by Kruzkov [13] and Vol’pert [14], while for degenerate parabolic equations
entropy solution were first considered by Vol’'pert and Hudajev [15]. Uniqueness of entropy
solutions to (1.2.1) was first proved by Carrillo [11], see also Karlsen and Risebro [12].
On the other hand, the uniqueness of weak solutions for the purely parabolic case (no
convection term) in the class of bounded integrable functions has been proved by Brezis
and Crandall [10].

1.3 Nonlinear Dispersive Equations

In the last thirty years, the theory of nonlinear evolution equations has grown into a
large field that attracts the attention of both mathematicians and physicists in view of
its applications to real world nonlinear models and of the novelty of the problems. It
is intended to be a new source for modern research dealing with nonlinear phenomena
of dispersive type. One of the reasons these equations are called dispersive is that the
solution of these equations are waves that spread out spatially as long as no boundary
conditions are inposed.

The central equations of study in this thesis are model equations for waves which take
account of both nonlinearity and dispersion effects. For example, by modelling equations
for waves in dispersion media, we begin by considering a body of water of finite depth
under the influence of gravity, bounded below by an impermeable surface. Ignoring the
effects of viscosity and assuming that the flow is incompressible and irrotational, the
motion is taken to be governed by the Euler equations together with suitable boundary
conditions on the rigid surface and on the water-air interface. So, by making assumptions
and approximations about the physical interest in question, we can obtain a set of model
dispersive equations formally valid for the description of waves propagating in just one
direction for small amplitude long wavelenth motion.

In this section, we will talk about two important examples of dispersive equations:

1.3.1 Korteweg-de Vries equation:

The Korteweg-de Vries (in short KdV) equation,

Uy + Uy + Uy = 0, (1.3.1)
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has been studied extensively since its first analysis in 1895 by Korteweg and de Vries. This
equation was considered by the above authors as a model for long water waves propagating
in a channel. The significance of their ideas went more or less unappreciated for several
decades. This can be traced in part to an inadequate description of their work by Lamb in
his monumental treatise on hydrodynamics. The appearance of the same equation derived
as a rudimentary model for waves in a number of diverse physical systems has awakened
the interest of physicists and mathematicians. It is now generally understood that the
Korteweg-de Vries equation, or other comparable model equations, can be expected to
appear as describing to the first approximation the behaviour of unidirectional long waves
in nonlinear dispersive media. More recently, the KdV equation has been found to describe
wave phenomena in plasma physics, anharmonic crystals and bubble-liquid mixtures. The
KdV equation is also relevant to the discussion of the interaction between nonlinearity and
dispersion, just as the well-known Burgers equation shows the features of the interaction
between nonlinearity and dissipation.

One fundamental mathematical representation of a wave moving in a one dimensional
medium is given by functions of two variables u(z,¢) of the form

u(x,t) = ¢z — ct) (1.3.2)

where ¢ is a function of one variable and ¢ is a nonzero constant. The animation of such a
function begins with the graph of the initial profile u(x, 0) = ¢(z). If ¢ is positive, then the
profile of u(z,t) = ¢(x — ct) at a large time ¢ is exactly a translation of the initial profile
by an amount c¢t in the positive x-direction. Such a function represents a disturbance
moving with constant speed ¢. Similarly, u(x,t) = ¢(z — ¢t) with ¢ < 0, representing a
disturbance moving in the negative z-direction with speed |c|. In either case, the profile
at each time ¢ does not get distored and remains a recognizable feature of a
wave as it is translated along z-axis. Waves represented by functions of the form
(1.3.2) are called travelling waves. Two basic features of any travelling wave are the
underlying profile shape defined by ¢ and the speed |c| at which the profile is translated
along the z-axis.

C

Definition 1.3.1. Travelling wave solution: A travelling wave solution of a partial
differential equation is a solution of the differential equation which has the form of a
travelling wave u(x,t) = ¢(x — ct), where ¢ is the wave speed and £ = x — ct is the
characteristic variable.

Definition 1.3.2. Solitary wave solution: This is the name given to a travelling wave
solution when ¢ : R — R satisfies the boundary conditions

Jm ¢(&) =0
for all n € N.

In the case of a specific nonlinear evolution equation which is completely integrable,
for example the KdV equation, the solitary wave solutions are called solitons. In general
it is not obvious that travelling wave solutions exist for a speciifc model, but in case of
KdV it does. An interesting fact, and rarely reffered to current literature, is that the
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first mathematical proof of existence and uniqueness of solutions of the KdV equation
was accomplished by Sjoberg [2] in 1970, using a finite difference approximation. His
proof is valid for initial data that are periodic and with square integrable third derivative.
Sjoberg’s uniqueness proof still is the standard one, using the Gronwall inequality.

1.3.2 Korteweg-de Vries-Kawahara equation:

The Korteweg-de Vries-Kawahara (Kawahara in short) equation
Ut + Uy + Upgs = Ugzzza, (133)

occurs in the theory of magneto-acoustic waves in a plasmas and in the theory of water
waves with surface tension. The Kawahara equation is an important nonlinear dispersive
equation. It describes solitary wave propagation in media in which the first-order disper-
sion is anomalously small. Equation (1.3.3) was first proposed by Kawahara in 1972, as a
model equation describing solitary-wave propagation in media. A more specific physical
background of this equation was introduced by Hunter and Scheurle [3], where they used
it to describe the evolution of solitary waves in fluids in which the Bond number is less
than but close to % and the Froude number is close to 1. In the literature this equation
is also referred to as the fifth order KdV equation or singularly perturbed KdV equation.

The fifth order term d5u is called the Kawahara term.

It is well-known that KdV equation describes one dimensional waves of small but finite
amplitude, but under certain circumstances, however, it might happen that the coefficient
of the third order derivative in the KdV equation becomes small or even zero. In that
case one has to take account of the higher order effect of dispersion in order to balance
the nonlinear effect. In such cases one may obtain a generalized nonlinear dispersive
equation, known as Kawahara equation, which has a form of the KdV equation with an
additional fifth order derivative term given by (1.3.3). There has been a great deal of
work on solitary wave solutions of the Kawahara equation [4, 5, 8, 10, 11] over the past
thirty years. It is found that, similarly to the KdV equation, the Kawahara equation also
has solitary wave solutions which decay rapidly to zero as ¢ — oo, but unlike the KdV
equation whose solitary wave solutions are non-oscillating, the solitary wave solutions of
the Kawahara equation have oscillatory trails. This shows that the Kawahara equation is
not only similar but also different from the KdV equation in the properties of solutions,
like what happens between the formulations of this equation and the KdV equation. The
strong physical background of the Kawahara equation and such similarities and differences
between it and the KdV equation in both the form and the behavior of the solution render
the mathematical treatment of this equation particularly interesting.

The Cauchy problem has been studied by a few authors [12, 13]. It has been shown
that the problem has a local solution v € C([-1,T]; H"(R)) if f € H"(R) and r > —1.
This local result combined with the energy conservation law yields that (1.3.3) has a
global solution u € C([—o0, 0o]; L2(R)) if f € L*(R). Well-posedness results can be found
in [6].
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1.4 Numerical method for PDEs

The subject of numerical schemes for hyperbolic conservation laws is quite well developed.
Many schemes have been designed for both scalar and systems of conservation laws. Most
of them approximate the solutions quite well although rigorous convergence results have
been obtained mostly for scalar conservation laws. There is a variety of different solution
methods for time-dependent partial differential equations. The main classes are spectral
methods, finite elements, finite differences and finite volumes. They all have different
strengths and drawbacks, and each have several subgroups. In this thesis, we will mostly
focus on finite difference methods.

1.4.1 Finite Difference Schemes

These methods are well developed for conservation laws. Typically, in this case, goal is to
approximate solutions to differential equations, i.e., to find a function (or some discrete
approximation to this function) which satisfies a given relationship between various of
its derivatives on some given region of space and/or time, along with some boundary
conditions along the edges of this domain. In general this is a difficult problem and only
rarely can an analytic formula be found for the solution. A finite difference method
proceeds by replacing the derivatives in the differential equations by finite difference
approximations. This gives a large algebraic system of equations to be solved in place of
the differential equation, something that is easily solved on a computer.
A finite difference method for (1.1.1) is given by,

Au  Af(u)

At Az

Here At and Az are small positive numbers. We shall use the notation

—0. (1.4.1)

Ul =u(jAr,nAt) and U" = (Ulg,--- UL, - Ug),

where U now is our numerical approximation to the solution of (1.1.1). Normally, since
we are interested in the initial value problem (1.1.1), we know the initial approximation

U°

7o _KSJSK7

and we want to use (1.4.1) to calculate U" for n € N.
We call a finite difference method conservative if it can be written in the form :

n+1 n n
= O U (1.42)
= U = A (P Ulg) = FU e Uy)
where
At
)\ - E;

The function F' is referred to as the numerical flux. For brevity, we shall often use the
notation

G(U;j) = G(Ujflfpa EA) Uj+q)a
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F(qu) = F(Uj—p7 e 7Uj+q)7
so that (1.4.2) reads
n+1 n, \ __ n n., n., 5
Conservative methods have the property that U is conserved, since
K K

dSUrttAr =" UrAz — AUF(U K) = F(U™ =K — 1))

j=—K j=—K
If we set U]Q equal to the average of ug over the j-th grid cell, i.e.,

1 (j+1)Az

U

i up(x) dz,

and for the moment assume that F(U™; K) = F(U"; —K — 1), then

/U"(x) d:r:/uo(as) dx.

A conservative method is said to be consistent if

Fu, - ,u) = f(u).

Definition 1.4.1. ( CFL-condition): A numerical method can be convergent only if its
numerical domain of dependence contains the true domain of dependence of the PDE, at
least in the limit as At, Ax go to zero.

For finite difference schemes we have typically the following restriction on the size of
the time step

n

<c
Az — 7

-
1

where A? is the largest eigenvalue of the flux f, and the constant ¢ is the CFL-number of
the numerical method.

The following theorem states the importance of the method being based on the con-
servative form, see [25].

Theorem 1.4.1. (Laz-Wendroff theorem) Consider a sequence of grids indexed by j =
1,2, ... with mesh parameters AtY) Az — 0 as j — oo. Let QU (x,t) denote the
numerical approximation computed with a consistent and conservative method on the j-th
grid. Suppose that QY converges to a function q as j — oo, i.e.,

HQ(]) _qu_>07 as j—>007

where ||.||,,. is the usual norm in LP. Then q(z,t) is a weak solution of the conservation
law.
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The local truncation error of a numerical method L, is defined (formally) as

1
Lai(z) = A—t(S(At)u — Sn(At)u)(z),
where S(t) is the solution operator associated with (1.1.1); that is, u = S(t)ug denotes the
solution at time ¢, and Sy (t) is the formal solution operator associated with the numerical
method, i.e.,

Sn(Atyu(z) = u(x) = A(F(u; j) — F(u;j —1)).
We say that the method is of k-th order if for all smooth solutions wu(z, 1),
|Las(2)] = O(ALY)

as At — 0. That a method is of high order, k£ > 2, usually implies that it is “good” for
computing smooth solutions.

1.4.2 Boundary conditions

Roughly speaking, boundary conditions are the set of conditions specified for the be-
havior of the solution to a set of differential equations at the boundary of its domain.
Boundary conditions are important in determining the mathematical solutions to many
physical problems. In a numerical simulation, it is impossible and unnecessary to sim-
ulate the whole universe. Generally we choose a region of interest in which we conduct
a simulation. The interesting region has a certain boundary with the surrounding en-
vironment. Numerical simulations also have to consider the physical processes in the
boundary region. In most cases, the boundary conditions are very important for the
simulation region’s physical processes. Different boundary conditions may cause quite
different simulation results. Improper sets of boundary conditions may introduce non-
physical influences on the simulation system, while a proper set of boundary conditions
can avoid that. So arranging the boundary conditions for different problems becomes
very important. While at the same time, different variables in the environment may have
different boundary conditions according to certain physical problems.

Commonly there are several different types of boundary conditions:

e Dirichlet boundary condition: The Dirichlet boundary condition is a type of
boundary condition, named after Johann Peter Gustav Lejeune Dirichlet. When imposed
on a partial differential equation, it specifies the values a solution needs to take on the
boundary of the domain. The question of finding solutions to such equations is known as
the Dirichlet problem. For a partial differential equation on a domain €2 such as

Au+u=0,
the Dirichlet boundary condition takes the form:
u(z) = f(z), Vz e .

e Neumann boundary condition: The Neumann boundary condition is a type
of boundary condition, named after Carl Neumann. When imposed on an ordinary or a
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partial differential equation, it specifies the values that the derivative of a solution is to
take on the boundary of the domain. For a partial differential equation on a domain €2
such as

Au =0,
the Neumann boundary condition takes the form:
Vu(z)n(z) = f(z), VYo e oQ,

where, n denotes the (typically exterior) normal to the boundary 0.

e Mixed boundary condition: A mixed boundary condition for a partial differential
equation indicates that different boundary conditions are used on different parts of the
boundary of the domain of the equation. For example, if u is a solution to a partial
differential equation on a set 2 with piecewise-smooth boundary 92, and 0f is divided
into two parts I'y and I's, one can use a Dirichlet boundary condition on I'; and a Neumann
boundary condition on I'y:

Ju
on

where vy and vy are given functions defined on those portions of the boundary.

u |r: Vo, = U1,

1.4.3 Summation-by-parts schemes

In general, finite difference schemes are relatively easy to code, and such schemes utilise
computers efficiently. The summation-by-parts (SBP) finite difference schemes for one-
dimensional derivative approximations are as follows: Let [0, 1] be the domain discretized
withz; = jAz,j=0,1,--- , N—1. A scalar grid function is defined as w = (wq, wy, -, wy_1).
To approximate w, we use a SBP operator D = P~1Q, where P and @ have the following
properties:

P="r" TPz>0 foralluz,
Q + Q" = B = diag(—1,0,---,0,1).

Also P is used to define an inner product (v, w)p = v Pw, such that the associated norm
w||p = (w, w)* is equivalent to the norm [Jw] = (Az Y, w?)"/2 In the work by Kreiss
and Scherer [29, 30], which was followed by Strand [31, 1] high-order finite difference
operators with a summation-by-parts (SBP) property were derived for first derivative
approximations. Stability for these schemes can easily be proven with energy estimates
for equations in one space dimension.

Implementing boundary conditions in a stable manner always makes the stability
analysis rather difficult. Also we know that a high-order finite difference scheme resolves
the solution much better but the analysis of boundary conditions becomes complicated
and it is not trivial to implement boundary conditions in a stable manner. Naive ways
of implementing boundary conditions often result in stable schemes, and theoretically it
is possible to analyse the effect on stability from the boundary conditions. However, the
accuracy is often not satisfying.
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Carpenter et al. [28] introduced a new way to implement boundary condi- tions
weakly for finite difference methods, with the Simultaneous Approximation Term (SAT)
technique. The technique involves penalty terms which make energy estimates for PDEs
in several space dimensions possible. In a series of articles by Nordstrém and Carpenter
[26, 27] this technique was developed for SBP operators and they also use this technique to
patch grids together, proving stability and conservation for such interfaces. The patching
of different grids allows the finite difference technique to be used for problems with more
complex geometries.

Below, we shall derive the energy estimates for both advection and advection-diffusion
equations.

e Continuous and Discrete energy estimates for advection equation: Consider
the equation

w+u, =0 0<t<1, 0<x<1
u(z,0) = f(x), (1.4.3)
w(0,t) = g(t).

To derive a bound on u, we will multiply (1.4.3) by u and integrate in space, yields
1
(/1fmm+uu¢f=gw? (1.4.4)
0
By denoting ||ul®> = fol u?dz, (1.4.4) gives

T T
MW+Au@Wﬁ=WW+Ag®Wt

i.e., u is bounded.
Now in the discrete case, let us define the approximation solution v = (vg, vy, -+ ,vn)
on the grid. Now an semi-discrete SBP-SAT discretization of (1.4.3) is,

T

v+ Dv=oP ey(vy — 9), (1.4.5)

where o is a parameter to be determind and eq = (1,0, -+ ,0)T. The analogous derivation
of the continuous energy estimate is given by the following. First muliplying (1.4.5) by
vT P results,

T Pu, + 07 Qu = avleg(vo — g),
which implies,
(lol2)e +0"(Q + QM)v = 200 eo (v — g),
consequently, we end up with
(ol = v + vx = 20(v5 — vog)-

Stability (that is v bounded, with g = 0) is achieved for ¢ < —1/2. With 0 = —1 we
have,

(loll7)e + 0% = ¢* — (vo — 9)*.
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i.e., the same estimate (with an additional small dissipative term) is obtained as in the
continuous case (1.4.4).
e Continuous and Discrete energy estimates for advection-diffusion equa-
tion: Consider the equation
Up + AUy = €Uy, 02 <1, 20

u(z,0) = f(z), (1.4.6)
w(0,t) =0, au(l,t) — 2eu,(1,1) =0

where a,e > 0. The boundary at x = 0 is a model of wall (and the 2 = 1 mimics a
far-field boundary condition). The energy method gives,

1 (/1u2 d:[> N au(1,1)*  au(0,1)?
2\ s T 2

= eu(1)u, (1) — eu(0)u,(0) — 6/0 u? dr.

Using the boundary condition yields,

1 1 1
f(/ 71,2d.r> +e/ u? dr = 0.
2 0 t 0

Hence, |lu|| is bounded.

A SBP-SAT semi-discrete approximation to (1.4.6) is given by

v +aP'Qu
=P QP Qu+ 0 EgP 7 (v — g1) + orEA P Hav — 2¢PTrQu — ggr),

where oy, and op are parameters to be determined with respect to stability, also Fy =
diag(1,0,---,0) and E; = diag(0,---,0,1). With g, = gr = 0, we apply the energy
method by multiplying by v P and adding the result to its transpose

(lv]1%); + av” Bv = 20" BP™'Qu — 2¢(P~'Qu)T P(P~Qu)
+ 20,07 Egv + 20pv" By (av — 2e P71 Qu).
With o = 1/2, all boundary terms at « = 1 cancel and the right boundary is stable. We

will use the short notation v,; = (P~!Qu); and assume that P is diagonal with upper-left
component hpy. (Note that pg > 0.) Then

(lv]|%): — avd = —2evgvag — 2e0T Pu, + 2003 (1.4.7)

The aim is to choose o, such that ||v|| becomes non-increasing. To achieve that, we would
like to rewrite the boundary terms as a quadratic form. Since no boundary term with v,
appears explicitely, it seems to be an impossible task. However, we may use

N
vl Pv, = v2hpo + h Z v2.p; = v2hpo + ||vx\|3,

=1
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Then (1.4.7) becomes

(1ollB)e + 2€ flv |5 + " Mr = 0,

(=20 —a €
M= ( € 26hp0> ’

If M is positive semidefinite, then the scheme is stable. Introduce, o, = o1 + €09 and
split M such that

M = M, + M, = (‘2"6 — 8) Te <_21"2 2hlp ) .
0

where rT = (v, vy0) and

M is positive semidefinite, if M; and My are. M, is positive semidefinite if o7 < —a/2

: 1
and M if 09 < —Thpy

1.5 Magnetic Induction Equations

The magnetic induction equations are a special form of the Maxwell’s equations which
describes the evolution of the magnetic field under the influence of a given velocity field.
These equations arise in a wide variety of applications in plasma physics, astrophysics
and electrical engineering. One important application are the equations of magneto-
hydro dynamics (MHD), see [2] for details. These equations combine the Euler equations
of gas dynamics with the magnetic induction equations, leading to the following semi-
conservative form of the ideal MHD equations with divergence constraint,

pr + div(pu) =0,

1
(pu), + div (pu®u+ (p+§B2>IfB®B> =0,

1
EteriV(<E+p+§B2>uf(u-B)B> =0,

B, +diviueB-B®u) =0,
divB =0,

together with equation of state

p- Loy Solul+ S [Bf
In the above model, the variables of interest are the mass density of the plasma p, the
velocity field u = (u!, u?,u?®)T, the magnetic field B = (B!, B2, B?)T, the pressure p, and
the total energy F.
In case of magnetic induction equations, the variables of interest are the velocity field
u = (u',u?,u®)T (known) and the magnetic field B = (B!, B2, B*)T (unknown). The
unknown follows certain balance laws.
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1.5.1 Derivation of the Magnetic Induction equations

The derivation of the Magnetic Induction equations in three spacial dimensions is de-
scribed below.
Faraday’s law: The magnetic flux across a surface S bounded by a curve 9S is given
by, see [7]

d

- B-dS=%E"dl.
dt
5 as

Using the Stokes theorem and the fact that the electric field, E/, in a co-moving frame is
zero, Faraday’s law takes the form,

0,B + curl(B x u) = —udiv(B). (1.5.1)

The above equation is called the magnetic induction equations and using simple vector
identites, (1.5.1) can be rewritten as,

GETE; +div(u®@ B — B ®u) = —udiv(B). (1.5.2)
The above form is also called the Godunov-Powell form of the magnetic induction
equations, and the source on the right-hand side of (1.5.2) is called the Godunov-Powell
source term.

Magnetic monopoles have never been observed in nature, although their existence
has been hypothesized in a number of quantum regimes by both the unified field theory
and the string theory. Nevertheless, it is common to assume that the magnetic field is
solenoidal, i.e., it satisfies the divergence constraint div(B) = 0. Hence, it is common
to set the right hand side of (1.5.1) to zero and couple the induction equation with the
divergence constraint in order to obtain

0:B + curl(B x u) =0,

div(B) — 0, (1.5.3)

This form (1.5.3) is commonly used in the literature as the appropriate form of the
magnetic induction equations to study and discretize. It is easy to see that (1.5.3) is
hyperbolic but not strictly hyperbolic. An important tool in the analysis of hyperbolic
system of equations is the derivation of energy estimates. The usual procedure in deriving
energy estimates consists of symmetrizing the hyperbolic system. It is not possible to
symmetrize (1.5.3) without explicitly using the divergence constraint. Hence, it is difficult
to obtain energy stability starting from (1.5.3).
On the other hand, we can use the following vector identity

curl(B x u) = Bdivu — udiv(B) + (u-V)B - (B-V)u
= (ulB)I + (uQB)y + (1L3B)Z —udiv(B) — (B - V)u,
and rewrite (1.5.2) in the non-conservative symmetric form,

OB+ (u-V)B = —-B(divu) + (B - V)u

_ M(DuB, (1.5.4)
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where the matrix M (Du) is given by

—9yu? — O ub yut 0,ut
M(Du) = O, u? —o,ut — 0,u? +0,u?
O, u® dyu? —0ut — Oyu?

Introducing the matrix,
dyut dut Out
C=—|0u* ou* 0u°],
Opu® Oyu® Out

(1.5.2) can also be written in the following “conservative” symmetric form,
OB+ 0, (A'B) + 0, (A’B) + 0. (A°B) + CB = 0, (1.5.5)

where A® = u'[ for i = 1,2,3. Note that the symmetrized matrices in (1.5.5) are diagonal
and that the only coupling in the equations is through the lower order source terms. These
symmetrized forms are in the same spirit as the non-linear symmetrized forms of MHD
equations introduced in [8].

Furthermore, by taking divergence on both sides of (1.5.1) we get

(div(B)); + div (udiv(B)) = 0. (1.5.6)

Hence, if div(By(x)) = 0, also div(B(x,¢) = 0 for ¢ > 0. This implies that all the above
forms (1.5.5), and (1.5.3) are equivalent (at least for smooth solutions).

1.5.2 Numerical aspects of magnetic induction equations

Even though the magnetic induction equations are linear, the presence of variable coeffi-
cients and lower order terms means that general closed form solutions are not available.
Hence, one has to design suitable numerical schemes for these equations. Furthermore,
since these equations appear as a sub-model in the MHD equations, the design of stable
and high-order accurate numerical schemes for the induction equations can lead to the
design of robust schemes for the non-linear MHD equations.

Most of the attention in the literature has been focused on the constrained form (1.5.3).
The key issue in the design of a suitable numerical scheme to approximate (1.5.3) has been
the treatment of the divergence constraint. A widely used approach has been to employ
projection methods based on a Hodge decomposition of the magnetic field. A base (finite
difference or finite volume) scheme is used to evolve the magnetic field. The evolved field,
which may not be divergence free, is then corrected for divergence errors by solving an
elliptic equation (see [4]). The resulting method is computationally expensive, as the
elliptic equation has to be solved at every time step.

Another common approach is to discretize (1.5.3) such that some particular form of
discrete divergence is preserved at each time step (see [11]). This approach is equivalent
to staggering the velocity and magnetic fields in each direction (see [4, 1, 20, 5] and a
detailed comparison in [12]). Some of these schemes are proved to be von Neumann stable
in the special case of constant velocity fields. No stability analysis is available either in the
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case of variable velocity fields or for problems with boundary conditions. These schemes
also involve wider stencils than what is required for a standard finite difference scheme.

Despite all the attempts at finding a suitable discretization of (1.5.3) and preserving a
special form of discrete divergence, it is not clear whether such an approach is appropriate.
Furthermore, there are many different choices for the discrete divergence operator and
preserving some form of discrete divergence exactly does not lead to preservation or even
to small divergence errors for a different form. The main aim should be to design a stable
scheme to approximate magnetic fields, and it is not clear whether preserving divergence
in a particular discrete form helps. One reason for the difficulties in proving stability
of discretizations for (1.5.3) with general velocity fields may lie in the very form of these
equations. Asremarked earlier, (1.5.3) are not symmetrizable directly and thus one cannot
obtain energy estimates in this form. This remains true for discretizations of (1.5.3).

A different approach consisting of discretizing the physical form (1.5.2) was proposed
in [17] for the non-linear MHD equations. Adapting this to (1.5.2) entails using a standard
upwind scheme for the convection part and a centered discretization of the source terms.
From (1.5.6), one can expect that divergence errors will be transported out of the domain
for transparent boundary conditions. This approach does not imply stability either, and
can lead to oscillations, as reported in [5]. A discontinuous Galerkin based discretization
of the symmetric form (1.5.5) was proposed in [2].

In a recent paper [5], the authors discretized the symmetric form (1.5.4) by using a
first order accurate upwind finite difference scheme. The resulting scheme also implied an
upwind discretization of the convection term in (1.5.2) with an upwind discretization of
the source term. This scheme was shown to be energy stable even with variable velocity
fields and to be TVD for constant velocity fields.

1.6 Magnetic induction equations with resistivity

Magnetic induction equations with resistivity is an extension of magnetic induction equa-
tions. These equations are a system of convection-diffusion equations with the magnetic
resistivity and heat conduction playing the role of diffusion. Many applications like plasma
thrusters for deep space propulsion and electromagnetic pulse devices involve small (but
non-zero) values of the magnetic resistivity. This is a submodel of MHD equations with
resistivity, given by

p+ div(pu) =0,
1
(pu); + div(pu @ u + (p + 5|B|2)1 - B®B) = —B(divB),
E,+div(E+p+ %\B|2)u — (u-B)B) = —(u- B)(divB),
B; +div(u®B — B ®u) = —u(divB) — ecurl(curl(B))

This is called Godunov-Powell form of resistive MHD equations. When the fluid cannot
be considered as completely conductive, but the other conditions for ideal MHD are
satisfied, it is possible to use an extended model called resistive MHD. Resistive MHD
describes magnetized fluids with finite magnetic diffusivity (e # 0). This diffusivity leads
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to a breaking in the magnetic topology; magnetic field lines can “reconnect” when they
collide. Usually this term is small and reconnections can be handled by thinking of them
as not dissimilar to shocks; this process has been shown to be important in the Earth-Solar
magnetic interactions.

1.6.1 Derivation of Magnetic Induction Equations with Resis-
tivity

In a moving medium, the time rate of change of the magnetic flux across a given surface

S bounded by curve 0S is given by [7]:

4 B-dSz/%—?dS%—%B><u-dl+/(div(B))u-dS+67{J~dl7
S

dt
s as s as

where the unknown B = B(x,t) € R? denotes the magnetic field, J = J(x,t) € R3 the
current density and x = (x,y, z) are the spatial coordinates. The current density is given
by: J = curl(B). The parameter € denotes the magnetic resistivity, and u(x, t) the (given)
velocity field.

Using Faraday’s law:
d
—— [ B:-dS= ¢ E -dl 1.6.1
- fEa (16.1)
5 as
Stokes’ theorem, the fact that the electric field E' = 0 in a co-moving frame and E' =

E + u x B we obtain,

86—]? + curl(B x u) = —udiv(B) — ecurl(curl(B)). (1.6.2)

Since magnetic monopoles have never been observed in nature, we can assume as before
that div(B) = 0. Using this constraing in (1.6.2), we obtain the system:
0,B + curl(B x u) = —ecurl(curl(B)),

div(B) = 0. (16:3)

The above equation is an example of a convection-diffusion equation. The version obtained
by taking zero resistivity (¢ = 0) in (1.6.3) is termed the magnetic induction equation
([33]). A standard way to obtain a bound on the solutions of convection-diffusion equa-
tions like (1.6.3) is to use the energy method. However (1.6.3) is not symmetrizable.
Consequently it may not be possible to obtain an energy estimate for this system.

On the other hand, (1.6.2) is symmetrizable. We use the following vector identity

curl(B x u) = Bdivu — udiv(B) + (u- V)B—(B-V)u
= (u'B), + (¢’B), + («’B), — udiv(B) — (B~ V)u,
and rewrite (1.6.2) in the form,

0B+ (u-V)B = —B(divu) + (B - V)u — ecurl(curl(B))

= M(Du)B — ecurl(curl(B)), (1.6.4)
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where the matrix M (Du) is given by

—ou* — 0.u? dyu' d.u'
M(Du) = O, u? —0yut — ou? 0,u?
TR du? —dput — Oyu?

Introducing the matrix,
dput Oyut dut
C=—|0u* Oyu* 0.u*],

Opu Oyud dut

(1.6.2) can also be written in the following form,

0B+ 0, (A'B) + 9, (A’B) + 0. (A’B) + CB = —ecurl(curl(B)) (1.6.5)
where A® = u'I for i = 1,2,3. Note that the symmetrized matrices in (1.6.5) are diagonal
and that the coupling in the equations are through both the lower order source terms and
the viscous terms.

Furthermore, taking the divergence of both sides of (1.6.2) we obtain,

(div(B)), + div (udiv(B)) = 0. (1.6.6)

Hence, if div(Bg(x)) = 0, it follows that div(B(x,t)) = 0 for ¢ > 0. This implies that all
the above forms (1.6.5), (1.6.3) and (1.6.2) are equivalent (at least for smooth solutions).

1.7 Summary of Paper I

The magnetic induction equations (1.5.1) can be viewed as a simple model equation for
MHD where we already know the velocity field. In this paper we design stable and
high-order accurate schemes for initial-boundary value problems corresponding to the
magnetic induction equations by discretizing the non-conservative symmetric form (1.5.5)
(i.e., using the Godunov-Powell source term). The spatial derivatives are approximated
by second and fourth-order SBP (Summation-By-Parts) operators. The boundary con-
ditions are weakly imposed by using a SAT (Simultaneous Approximation Term) and
time integration is performed by standard Runge-Kutta schemes. We also report several
experiments that show that the scheme of this paper is robust.

1.7.1 Numerical experiment

In this experiment, we consider (1.5.1) with the divergence-free velocity field u(z,y) =
(—y,z)T. The exact solution can be easily calculated by the method of characteristics
and takes the form

B(x,t) = R(t)Bo(R(—t)x), (1.7.1)

where R(t) is a rotation matrix with angle ¢ and represents rotation of the initial data
about the origin.
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We consider the divergence free initial data,

Bo(l,7y) —4 <xiul> 6720(<"L'71/2)2+?/2)7 (172)
2

and the computational domain [—1, 1] x [—1,1]. Since the exact solution is known in this
case, one can in principle use this to specify the boundary data ¢g. Instead, we decided
to mimic a free space boundary (artificial boundary) by taking g = 0. (which is a good
guess at a far-field boundary).

We run this test case with SBP2 and SBP4 schemes and present different sets of
results. In Figure 1.7.1, we plot |B| = (|B|? + |B??)"/? at times ¢t = 7 (half-rotation)
and t = 27 (one full rotation) with the SBP2 and SBP4 schemes. As shown in this

(c) half rotation, SBP4 (d) full rotation, SBP4

Figure 1.7.1: Numerical results for |B|.

figure, SBP2 and SBP4 schemes resolve the solution quite well. In fact, SBP4 is very
accurate and keeps the hump intact throughout the rotation.
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1.8 Summary of Paper II

This paper is an extension of the previous paper. In this paper also, we design stable
and high-order accurate schemes for initial-boundary value problems corresponding to the
magnetic induction equations with resistivity by discretizing the non-conservative sym-
metric form (1.6.5) (i.e., using the Godunov-Powell source term). In this paper, we have
used two different sets of boundary conditions: Dirichlet and mixed boundary conditions.
As in the previous paper, here also the spatial derivatives are approximated by second and
fourth-order SBP (Summation-By-Parts) operators. The boundary conditions are weakly
imposed by using a SAT (Simultaneous Approximation Term) and time integration is
performed by standard Runge-Kutta schemes. Here also we report several experiments
that show that the scheme of this paper is robust.

1.8.1 Numerical results

Here we consider a divergence free velocity field u(x,y) = (—y, z)” and a slightly modified
form of (1.6.5), which in two dimensions is given by

_((Bz)zy - (Bl)yy)

B;+AB,+AB,—CB=¢
e o ((B®)ae — (BY)ay)

+F, (1.8.1)

where the forcing function F is given by,

f1 = 160e(y — 0.5sin(t)) [—4 + 40{(z — 0.5cos(t))* + (y — 0.5sin(t))*}] e*®,

fo = —160€(y — 0.5 cos(t)) [—4 + 40{(z — 0.5cos(t))* + (y — 0.5sin(t))*}] e, (1.82)

with A:
A(t) = —20{ (2 cos(t) + ysin(t) — 0.5)* + (—wsin(t) + y cos(t))*}.

It is straightforward to extend the stability results to SBP-SAT schemes for (1.8.1).
The forcing term is evaluated in a standard manner. The forcing function in (1.8.1)
enables us to calculate an exact (smooth) solution of the equation given by,

B(x,t) = R(t)Bo(R(~t)x), (1.8.3)

where R(t) is a rotation matrix with angle .
For initial data, we choose the divergence free magnetic field:

T — =

Bo(ZLy) _ 4< _y1> 6—20((9971/2)27%/2)7 (1.8.4)
2

and the computational domain [—1,1] x [—1,1]. Since the exact solution is known in
this case, we use this solution to specify the data for the boundary conditions. Using
Dirichlet or mixed boundary conditions led to very similar results. The time-integration
was performed with a second-order Runge-Kutta method at a CFL number of 0.5. The
resistivity € = 0.01 was used.
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(a) SBP2, half rotation (b) SBP2, full rotation

(c) SBP4, half rotation (d) SBP4, full rotation

Figure 1.8.1: Numerical results for |B.
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We plot the I2 norm of the magnetic field: B = 1/(B1)2 + (B2)2, at times t = 7 (half
rotation) and ¢t = 27 (full rotation) for both the SBP2 and SBP4 schemes in figure 1.8.1.
As shown in the figure, both SBP2 and SBP4 schemes resolve the solution quite well.
There are very few noticeable differences between the second and fourth order schemes at
this resolution. The shape of the hump is maintained during the rotation.

1.9 Summary of Paper III

This paper is concerned with the initial-boundary value problem of the Kawahara equa-
tion:

Up = —UUy — Ugzy T Ugzzax, (191)
with initial condition
uw(z,0) = f(z), forallx (1.9.2)
and the boundary condition
u(z,t) =u(z+1,t), forall z and ¢ (1.9.3)

It is well known that the one-dimensional waves of small but finite amplitude in dispersive
systems (e.g., the magneto-acoustic waves in plasmas, the shallow water waves, the lattice
waves and so on) can be described by the Korteweg-de Vries (KdV in short) equation,
given by

Up = —UlUy — Uppg, (1.9.4)

which admits either compressive or rarefactive steady solitary wave solution (by a solitary
water wave, we mean a travelling wave solution of the water wave equations for which
the free surface approaches a constant height as x| — oo) according to the sign of the
dispersion term (the third order derivative term). Under certain circumstances, however,
it might happen that the coefficient of the third order derivative in the KdV equation
becomes small or even zero. In that case one has to take account of the higher order
effect of dispersion in order to balance the nonlinear effect. In such cases one may obtain
a generalized nonlinear dispersive equation, known as Kawahara equation, which has a
form of the KdV equation with an additional fifth order derivative term given by (1.9.1).

In this paper, we consider both the semi-discrete as well as fully-discrete schemes
for the initial-boundary value problem corresponding to (1.9.1). We have showed the
convergence of both schemes. Also both the local and global existence of solutions has
been proved.

1.9.1 Semi-discrete case

We consider the following semi-discrete scheme of the Kawahara equation (1.9.1), given
by

1
(u;); = —g[uiDoui + Doui] — D_D3u; + D3 D*w;, i=1,2,..,N, (1.9.5)
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with the initial condition
ui(0) = flz), i=1,2...,N (1.9.6)
and the boundary condition
w;(t) = wirn(t) for all ¢ and ¢, (1.9.7)

where we have used the following finite difference operators:

_ 1
T Ax

Later on we will also use the following notations:

1 1
D,ui (U7 — Ui,1)7 D+U1; = Ix(ui+1 — m), Do’ll/z' = m(ui+1 — Uz‘,l).

/1P = (£, f) and (f,g) = / T@loa) dx,

and in the space of gridfunctions ( a discrete, possibly complex valued, function defined
on the grid ), we define the scalar product and the norm by

(f,9)n = hzmg(xi) and || f|[; = (f, f)n-

Local existence of solutions to (1.9.1) follows from the following theorem:

Theorem 1.9.1. There exists a time Ty > 0 and constants k;, i = 0, 1,2, 3,4 independent
of Ax but dependent on f(x) and its derivatives of order five and lower, such that

u( )l < ko, forallt (1.9.8)
lu(z;, t)| <k,  0<t<Ty,  foralli (1.9.9)
|D_Diu(-,t)||, <ks, 0<t<Ty (1.9.10)
|DiD2u(- b, <ks, 0<t<T (1.9.11)
and finally with,
du(x,t)

v(z,t) = 5

o Oy < ks, 0<t<Th (1.9.12)

Proof. (Sketch only) First of all multiplying (1.9.5) by Azw; and summing over all 4 (en-
ergy method) gives the estimate (1.9.8), where we have used the following two identities:

e (u,D_D3u), = &2 ||DyD_ul;.

o (D30 = 4 [D_D2ul}
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On the other hand, from the equation (1.9.5) using the triangle inequality, we can prove
the following inequality:
HDiDEuHh < vy vl + va, (1.9.13)

where v = w;, 1 and v, are constants independent of Az. Now to obtain a bound for ||v||,,,
we shall differentiate equation (1.9.5) and use energy method as before. These bounds
together with some interpolation inequalities gives all the required estimates stated in the
above theorem. Finally, using these bounds, it is quite easy (using Fourier transforms and
Arzela-Ascoli theorem) to show the convergence of the semi-discrete scheme. O

On the other hand global existence of solutions can be proved using the following
two lemmas:

Lemma 1.9.1. Let u(z,t) be a solution of the problem (1.9.1). Then there exist constants
ay, g such that

/OIUQ(x,t) dr = /01 u*(x,0) dr = /01 fPdr=ay (1.9.14)

1 1
/ (lug’ —u? - ufm> dr = / <1f3 - f”z) dr = s (1.9.15)
0 3 0 3

Lemma 1.9.2. Let u(z,t) be a solution of the problem (4.1.1). Then there exists a
constant o such that
max |ug(z, )] < « (1.9.16)

’ 7 e ||2 ou
lolP® <& ||=ff = £+ 57| v=gp (1.9.17)

1.9.2 Fully-discrete case

We propose the following semi-implicit fully-discrete aproximation to (1.9.1), given by

At )
u?*l =uj — ?[Q?Dou? + Do(u)?] — AtD,Diu;‘“ + AtDiD%u?“,

(1.9.18)
_ 1
where w; = i(uﬂl +uj_q).
Now keeping in mind that Douf = 2u;Dou;, we can rewrite the above scheme as
uft = ap — At Douj — AtD_Duf* + AtD3 D?u (1.9.19)
with the initial condition
u) = f(v;), i=1,2,..,N, (1.9.20)
and the boundary condition
uf =uy y forall i and n. (1.9.21)

Below we will state the main theorem in the fully discrete case:
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Theorem 1.9.2. There exists a time T > 0 and constants k;, i = 0,1,2,3,4 independent
of Ax but dependent on f(x) and its derivatives of order five and lower, such that

|u"]], < ko, 0<nAt<T (1.9.22)
[u” ()] < Ky, 0<nAt<T (1.9.23)
|D_Diu’||, <ksy, 0<nAt<T (1.9.24)
|DYD* ||, < ks, 0<nAt<T (1.9.25)

and finally with,
v" = Dfu"!, neN,

[0"[l, < ks, 0 <nAE<T. (1.9.26)

To prove the above theorem, we have used the similar arguments to the ones used in
the semi discrete case.

1.9.3 Summary of numerical results

We have considered the following initial function given by

1 1
u(z,0) = %sech4 (Qﬁg(x — c)) ,

then it is known that the explicit solution is given by the following travelling wave

105 1 36t
w(z,t) = —sech? [ —— (2 — — —¢
(@.) (G759

Since we know that the behaviour of the exact solution for Kawahara equation, mainly
which remains its shape as time grows, it will be interesting to see how the numerical so-
lution given by the scheme (1.9.19) evolves with time. We will use the following notations:
UK scheme - scheme described in this paper and JMO scheme - scheme described as in
[14] and |jul|. = (Az ), ui)% In order to compare with the existing scheme given by
[14], we present the (2 errors on a computational domain [—40, 40], between exact solution
and the solution generated by the UK and JMO schemes in table 1.9.1.

In the following figures 1.9.1, we show the behaviour of the numerical solutions at
different times. In this case we have used a domain [—20,50], 5000 mesh points and a
CFL number 0.75. We will compare our results with the results given by [14].
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Mesh points | UK JMO

4000 2.7e-3 1.2e-3
8000 1.4e-3 6.2¢-4
12000 9.2e-4 4.2¢-4
16000 7.0e-4  3.0e-4

Table 1.9.1: Numerical Experiment 1: [ errors between exact and simulated solutions at
time ¢ = 10 for both UK and JMO schemes .

0 0 20 30 40 =10 ] 10 20 30 40
77777 : Exact, - - - - : UK scheme, : JMO scheme. -----:Exact, - - - - : UK scheme, ...... : JMO scheme.

o 07

10 o 10 20 30 40 E “Obg =10 0 10 20 30 40
————— : Exact, - - - - : UK scheme, JMO scheme. —-----: Exact, - - - - : UK scheme, JMO scheme

Figure 1.9.1: Top Left: Exact and Numerical solution at time ¢ = 30 for both UK scheme
and JMO scheme; Top Right: Exact and Numerical solution at time ¢t = 60 for both UK
scheme and JMO scheme; Bottom Left: Exact and Numerical solution at time ¢ = 90 for
both UK scheme and JMO scheme; Bottom Right: Exact and Numerical solution at time
t = 120 for both UK scheme and JMO scheme.
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1.10 Summary of Paper IV

In this paper, we consider semi-discrete finite difference schemes for the following Cauchy
problem

u(0, ) = ug(x), z €R, (1.10-1)
where IIp = R x (0,7) with 7" > 0 fixed, u : IIz — R is the unknown function, f the
flux function, and A the nonlinear diffusion. Regarding this, the basic assumption is
that A” > 0, and thus (1.10.1) is a strongly degenerate parabolic problem. The scalar
conservation law u;, + f(u), = 0 is a special example of this type of problems.

Independently of the smoothness of the initial data, due to the degeneracy of the
diffusion, jumps may form in the solution u. Therefore we consider solutions in the weak
sense, 1i.e.,

{ut + f(u)e = A(u)ae, (x,t) € Ty,
x)

Definition 1.10.1. Set [y = (0,T) xR, a function u(t,x) € L> ((0,T); L*(R))NL>(Il7)
is a weak solution of the initial value problem (1.10.1) if it satisfies

D.1 A(u) is continuous and A(u), € L®(Ily).
D.2 For all test functions ¢ € D(Ily)

// upy + f(u)pr + A(u)py, dedt = 0. (1.10.2)
17

D.3 The initial condition is satisfied in the L'-sense
1im/ lu(t, z) — up(x)| dx = 0.
tlo Jp

In view of the existence theory, the condition D.1 is natural, and thanks to this we
can replace (1.10.3) by

//H wpr + (f(u) — A(u),) po dedt = 0. (1.10.3)

If A is constant on a whole interval, then weak solutions are not uniquely determined by
their initial data, and one must impose an additional entropy condition to single out the
physically relevant solution. A weak solution satisfies the entropy condition if

o(w); + q(u)y + 7(1) e <0 in D'(Il7), (1.10.4)
for all convex, twice differentiable functions p : R — R, where ¢ and r are defined by
q(u) = o' (u)f'(u), and r'(u) = o' () A'(w).

Via a standard limiting argument this implies that (1.10.4) holds for the Kruzkov entropies
o(u) = |u—c| for all constants ¢. We say that a weak solution satisfying the entropy
condition is an entropy solution.



1.10. SUMMARY OF PAPER IV 31

The aim of this work is to derive a convergence rate estimate for the approximate
solutions to degenerate problems. For conservation laws (very degenerate problems), the
convergence rate for monotone methods has long been known to be Az'/2 [36], and this
is also optimal for discontinuous solutions. For non-degenerate problems, the solution
operator (taking initial data to the corresponding solution) has a strong smoothing ef-
fect, and truncation analysis applies. Hence difference methods produces approximations
converging at the formal order of the scheme.

1.10.1 Summary of the general results

In this section we state the main results of Paper IV. To begin with, we collect some
useful information about entropy solutions in the following, for a proof see [34]. Let the
signum function be defined as

-1 o0<0,
sign(c) =<0 o =0,
1 o >0,

and its regularized counterpart, sign,, defined as

sign. (o) sign(o) |o| > e,
g =
&lle sin (’;—Z) otherwise,

where £ > 0.

Theorem 1.10.1. Ifug € B.V(R) N LY(R), then there exists a unique entropy solution u
satisfying

//H |u — c| i + sign(u — ¢)(f(u) — f(c))pr + |Alu) — A(c)| ze dzdt >0,  (1.10.5)

for all constants ¢ and all non-negative test functions in D'(Ily). Furthermore, the fol-
lowing limits hold,

/ / Ju — ¢ pe-tsign(u — o) (f(u) — £(6) — A(u)s) gx

(1.10.6)
= lgifg //HT |A(u),)? sign’ (A(u) — A(c)) ¢ dtd,
161%1 //HT (f(u) = f(c)) A(u), signl (A(u) — A(c)) pdtdz = 0, (1.10.7)

for all non-negative test functions .

We consider a semi-discrete approximation, where space is discrete, but time contin-
uous. Let Az be some small parameter, and set z; = jAz and x;,1/2 = (j + 1/2)Az for
J €Z. Set I; = (zj_1/2,Tj41/2). The discrete derivatives D¥ are defined by

9j£1 — T

Diaj ==+ Ar
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Our scheme is defined by

Ly (t)+ D Fip1o=D DA, t>0,
{dtuﬂ( ) 5112 J ’ (1.10.8)

u;(0) = A= fI] ug(z) dx,
for j € Z. Here F;/, is some consistent numerical flux
Fir2 = F (uj,ujpn) and A; = A(u;).

In order to define an approximation on the whole of II, we let ua, be the piecewise linear
interpolant given by

uaz(w,t) = u;(t) + DYu,(t) (v —x;), for x € [x;,244],
and with a slight abuse of notation we define u; to be the piecewise constant function
u;(z) =u; for x € (xj_1/2, j11/2)-
We have some useful estimates for u;(t):
e a uniform L> bound.
e a uniform total variation bound.
and the following two estimates for the discrete total flux term Fjiq/2(t) — DA (u;(t)):
e a uniform L bound.
e a uniform total variation bound.

See [35] for more details about the proof of above estimates. Our main result in this paper
is the following:

Main Theorem. Let u be the unique entropy solution to (1.10.1) and ua, be as defined
by (1.10.8). Choose a constant

M>  max |f'(u)],

[ul<[[uoll oo gy

and another constant L > MT, where T' > 0. Then there exists a constant C, independent
of Az, but depending on f, L, T and ug, such that

LMt
/ lu(t, ©) — up(t,z)| do < CAzY™ fort < T.
—L+Mt

As a by-product of our method of proof we get an improved rate if the diffusion is
linear. The significance of this rate is that is independent of the size of the diffusion,
which in this case is 1) .
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Main Corollary. Let u be the unique solution to the viscous regularization
w+ f(w)y =nug,. >0, u(z,0) =u(x),

and let ua, be defined by (1.10.8) with A(u) = nu. Then there exists a constant C,
independent of Az and 7, but depending on f, L, T and ug, such that

L—Mt
/ lu(t, ©) — upn(t, )| de < CAzY? fort <T.
—L+Mt

Proof. (Sketch only)
First note that, instead of discretizing (1.10.1), we shall discretize the following regu-
larized equation

ul + f (W), = (AW") +nu),,, t >0, u"(0,z)=u(z), (1.10.9)

xx

and let 7 tend to zero in a suitable manner. Since in [34], it was established that for t < T'

Ju(t,-) = u"(t, M 1y < CV, (1.10.10)

it suffices to compare u" and our approximate solution.

The main idea behind the proof is mainly “doubling of the variables” argument. Rather
than starting with the entropy condition (1.10.5), we will start with the argument leading
up to this condition. To do that, set

e (u,c) = /“ sign, (A(z) — A(c)) d=.

This is a convex entropy for all constants ¢. Although 9. (u,c) &~ |u — ¢| but since v, is
not symmetric in v and ¢, this makes difficult to work with when doubling the variables.
But nevertheless, one can prove the following equality:

[ =l sign. (Al) = A (us) (F(0) = £ (ua.)) 9, 4

T

- / [sign! (A(w) — A(uan) (A(w),)? — Alu), A (uns),)
e (1.10.11)

—[A(u) — A (uaz)l. (pyy + Pay)
+sign; (A(u) — A (uaz)) (f(u) — f (uaz)) A(u)ye
(e (uas) = u = wsal) ] dX,

where dX = dydsdxzdt and |a|, = [ sign.(z)dz.
Now next aim is to obtain an analogous estimate for the difference approximation ua,.
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One can prove the following equality holds:

/‘ lune — ul i + sign. (A (uaz) — A(u) (f (uaz) = f (w)) pr dX
113,
= [ st (4 ) = A) (A (0ar),)* = A uar), A(w),) dX
T (1.10.12)
[ A (s) = AL (ur + 0,) dX
17
+ / “Error terms” dX.
1z
Now adding (1.10.11) and (1.10.12), and after some manipulations one can show that
the following inequality holds.

/Hz [Imx —ul (e + ¢5)) (1.10.13)

+ sign, (4 (uar) = A@w)) (f (uar) = F(w) (2 + )
+ |A(uss) = AW, (Pra + 20m + 0u)] X

> /H sign’ (A(u) — A (uas)) (f(u) —  (uas)) A(u)ypdX

7
[ ) = Ju = usil) 0. X
7
+/ “Error terms” dX.
7
=: Q1+ QydX + / “Error terms” d.X
17 17
We shall specify now a “suitable” nonnegative test function ¢ = p(t, z, s,y) defined
in II7 x II7. In order to manipulate the first term on the left of (1.10.13), we have used
the following two facts:

/ lu(z,t) — u(y, t)| w,(z — y) dedy < Cr
(1.10.14)
and / [u(z, s) — u(z, t)| wr(t — s) deds < Cry,

for some standard mollifier w and w, (z) = w(%). One can also show that the second and
third terms on the left of (1.10.13) can be bounded by C(ry+r+ a+ ap), where all these
parameters are coming from the particular choice of the test function ¢.

In order to estimate the integral of Q,, we have used the facts that A" > 7 and
[te(a,b) —|a — b|]| < C£. On the other hand, we have used the coarea formula in order
to estimate the integral of Q;. Observe that

{sign. (A(uaz) — A(u)) = 0} = {If(mx) —fu)] < M;U}
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for o € [—1,1].

Now the final task is to estimate all the “error terms” in an appropriate manner.
Finally, combining all these estimates one can show that the estimate stated in the Main
theorem holds.

O

1.10.2 Summary of numerical result

In order to test the unlikely optimality of the convergence rate of our main theorem, we
compute the numerical convergence rate of an example. Consider the following initial
value problem

u(z,0) = sin(z), € [-7/2,7], (1.10.15)

{u,, = A(u) 4z fort >0and x € (—7/2,7), A(u) = 3 (max {u, 0})°
supplemented with the boundary conditions

0, A(u(t,z)) =0 fort>0and x = —7/2, z = 7.

We have used the Euler method to integrate the system of ordinary differential equations
(1.10.8), resulting in the update formula

w;((n + 1)At) = uj(nAt) + AtD~ DT A;(nAt).

In Figure 1.10.1 we show the solution in the (x,t) plane and a snapshot of v at t = 1, for
an approximation using 400 grid points in the interval (—7/2, 7).

i o R |
s

Figure 1.10.1: An approximate solution to (5.4.1) using 400 grid points. Left: u in the
(x,t) plane for ¢ € [0,4]. Right: an approximation to u(1l,z) using 25 grid points, a
reference solution computed using 4000 grid points and the initial data.
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1.11 Concluding remarks

We have considered the magnetic induction equations that arise as a submodel in the MHD
equations of plasma physics. We considered SBP-SAT based finite difference schemes for
the initial-boundary value problem corresponding to the magnetic induction equations
and magnetic induction equations with resistivity. We used SBP finite difference opera-
tors to approximate spatial derivatives and a SAT technique for implementing boundary
conditions. The resulting schemes were energy stable and high order accurate.

In future we plan to extend this SBP-SAT framework to more realistic models in-
volving induction equations (e.g. MHD). The mathematical model for the atmospheric
dynamics in the context of MHD theory is highly nonlinear; it is almost impossible to
seek meaningful analytical solutions for realistic physical problems. Therefore, we need
to utilize appropriate numerical methods to seek approximate solutions which are known
as numerical simulations. It is well-known that the treatment of appropriate boundary
conditions is the key to the success of MHD simulation of a realistic physical situation.
To proceed otherwise will lead to an erroneous physical solution and misinterpretation
of the observed physical features. Main aim is to investigate and design stable high or-
der numerical boundary closures for the MHD equations. In a more general context, we
have been trying to construct an entropy conservative/stable scheme in the presence of
boundaries for general nonlinear conservation laws.

In the recent years, spectral method have becomes one of the standard tools for the
approximate solution of nonlinear partial differential equations. It is well known that
spectral methods enjoy high order of accuracy as long as underlying solution is smooth.
We have been working on the convergence of a fully discrete spectral scheme for the
Kawahara equation (1.9.1). We are analyzing a fully discrete spectral method for the
numerical solution of the initial- and periodic boundary-value problem for Kawahara
equation. The equation is discretized in space by the standard Fourier-Galerkin spectral
method and in time by the explicit leap-frog scheme. For the resulting fully discrete,
conditionally stable scheme we expect to prove an L?-error bound of spectral accuracy in
space and of second-order accuracy in time.

In paper IV, we have shown that the L difference between the approximate solution
and the unique entropy solution of nonlinear degenerate convection-diffusion equation
converges at a rate O(Az'/M), where Az is the spatial mesh size. This rate of convergency
is certainly not optimal. We plan to continue investigating the rate of convergence for
degenerate convection-diffusion equations in a different framework, based on the kinetic
formulation. This approach does not make use of Kruzkov entropies and doubling of
variables. It uses in a fundamental way the entropy defect measure appearing in the
kinetic formulation. This measure plays a central role for proving error estimates.
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Abstract

We describe high order accurate and stable finite difference schemes for the
initial-boundary value problem associated with the magnetic induction equations.
These equations model the evolution of a magnetic field due to a given velocity field.
The finite difference schemes are based on Summation by Parts (SBP) operators
for spatial derivatives and a Simultaneous Approximation Term (SAT) technique
for imposing boundary conditions. We present various numerical experiments that
demonstrate both the stability as well as high order of accuracy of the schemes.

2.1 Introduction

The magnetic induction equations are a special form of the Maxwell’s equations that
describe the evolution of the magnetic field under the influence of a given velocity field.
These equations arise in a wide variety of applications in plasma physics, astrophysics
and electrical engineering. One important application are the equations of magneto-
hydro dynamics (MHD). These equations combine the Euler equations of gas dynamics
with the magnetic induction equations. Our goal in this paper is to describe stable and
high-order accurate numerical schemes for the magnetic induction equations.

We start with a brief description of how the equations are derived. Let the magnetic
field and given velocity field be denoted by B and u respectively. Faraday’s law for the
magnetic flux across a surface S bounded by a curve 9S is given by (see [18]),

4 B-dS:fE-dl.
dt
5 as
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42 CHAPTER 2. MAGNETIC INDUCTION EQUATION

Using the Stokes theorem and the fact that the electric field, E, in a co-moving frame is
zero and the magnetic resistivity is zero, Faraday’s law takes the form,

%—}?—f—div(u@B—B@u) = —udiv(B). (2.1.1)

Using simple vector identities, (2.1.1) can be rewritten as,
0,B + curl(B x u) = —udiv(B). (2.1.2)

Magnetic monopoles have never been observed in nature. As a consequence, the magnetic
field is always assumed to be divergence free, i.e., div(B) = 0. Hence, it is common
to set the right-hand side of (2.1.2) to zero and couple the induction equation with the
divergence constraint in order to obtain

9,B + curl(B x u) =0,

div(B) = 0, B(z,0) = By(x). (2.1.3)

This form (2.1.3) is commonly used in the literature as the appropriate form of the
magnetic induction equations to study and discretize. It is easy to see that (2.1.3) is
hyperbolic but not strictly hyperbolic. An important tool in the analysis of hyperbolic
system of equations is the derivation of energy estimates. The usual procedure in deriving
energy estimates consists of symmetrizing the hyperbolic system. It is not possible to
symmetrize (2.1.3) without explicitly using the divergence constraint. Hence, it is difficult
to obtain energy stability starting from (2.1.3).
On the other hand, we can use the following vector identity

curl(B x u) = Bdivu — udiv(B) + (u-V)B — (B-V)u
= (ulB)z + (uZB)y + (u?’B)Z —udiv(B) — (B - V)u,
and rewrite (2.1.1) in the non-conservative symmetric form,

OB+ (u-V)B = —-B(divu) + (B- V)u

= M(Du)B, (214)

where the Du denotes the gradient of u and the matrix M (Du) is given by

—Oyu? — O.u? dut o,ut
M(Du) = 0, u? —Ou! — ou? +0,u?
Ou? yu? —0put — Oyu?

Introducing the matrix,
Oput Oyut Out
C=—|0u* ou* 9],

Opu® Oyud Oul

(2.1.1) can also be written in the following “conservative” symmetric form,

OB+ 0, (A'B) + 0, (A’B) + 0. (A’B) + CB =0, (2.1.5)
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where A’ = u'[ for i = 1,2,3. Note that the symmetrized matrices in (2.1.5) are diagonal
and that the only coupling in the equations is through the lower order terms. These
symmetrized forms are in the same spirit as the non-linear symmetrized forms of MHD
equations introduced in [8].

Furthermore, by taking divergence on both sides of (2.1.2) we get

(div(B)), + div (udiv(B)) = 0. (2.1.6)

Hence, if div(By(x)) = 0, also div(B(x,t)) = 0 for ¢ > 0. This implies that all the above
forms (2.1.5), and (2.1.3) are equivalent (at least for smooth solutions). Introducing the
space HYV as

HYR?) = {w:R* = R® | |w| € L*(R?), div(w) e L*(R®)},
we have the following theorem:

Theorem 2.1.1. Assume that the velocity field u is sufficiently smooth, and that By €
HYY(R3). Then there exists a unique weak solution B € C([0,T]; H¥™(R?)) of (2.1.5).
The solution B satisfies the energy estimate,

B, T

HAiv(R3) <Cr ”BOHHdiv(RB)

The constant Cr depends only on the final time T. Furthermore, if div(Bg) = 0, then the
physical form (2.1.1) and the symmetric form (2.1.5) are equivalent to the constrained
form (2.1.3), i.e., B is also the unique weak solution of (2.1.3).

The proof of the above theorem uses the energy estimate and we will provide a sketch
of the proof for the two-dimensional version of the equations together with boundary
conditions later in this paper.

Even though the magnetic induction equations are linear, the presence of variable co-
efficients and lower order terms means that general closed form solutions are not available.
Hence, one has to design suitable numerical schemes for these equations. Furthermore,
since these equations appear as a sub-model in the MHD equations, the design of stable
and high-order accurate numerical schemes for the induction equations can lead to the
design of robust schemes for the non-linear MHD equations.

Most of the attention in the literature has been focused on the constrained form (2.1.3).
The key issue in the design of a suitable numerical scheme to approximate (2.1.3) has been
the treatment of the divergence constraint. A widely used approach has been to employ
projection methods based on a Hodge decomposition of the magnetic field. A base (finite
difference or finite volume) scheme is used to evolve the magnetic field. The evolved field,
which need not be divergence free, is then corrected for divergence errors by solving an
elliptic equation (see [4]). The resulting method is computationally expensive, as the
elliptic equation has to be solved at every time step.

Another common approach is to discretize (2.1.3) such that some particular form of
discrete divergence is preserved at each time step (see [11]). This approach is equivalent
to staggering the velocity and magnetic fields in each direction (see [4, 1, 20, 5] and a
detailed comparison in [12]). Some of these schemes are proved to be von Neumann stable
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in the special case of constant velocity fields. No stability analysis is available either in the
case of variable velocity fields or for problems with boundary conditions. These schemes
also involve wider stencils than what is required for a standard finite difference scheme.

Despite all the attempts at finding a suitable discretization of (2.1.3) and preserving a
special form of discrete divergence, it is not clear as to whether such an approach is appro-
priate. Furthermore, there are many different choices for the discrete divergence operator
and preserving some form of discrete divergence exactly does not lead to preservation or
even keeping divergence errors small for a different form. The main aim should be to de-
sign a stable scheme to approximate magnetic fields and it is not clear whether preserving
divergence in a particular discrete form helps. One reason for the difficulties in proving
stability of discretizations for (2.1.3) with general velocity fields may lie in the very form
of these equations. As remarked earlier, (2.1.3) are not symmetrizable directly and thus
one cannot obtain energy estimates in this form. This remains true for discretizations of
(2.1.3).

A different approach consisting of discretizing the physical form (2.1.1) was proposed
in [17] for the non-linear MHD equations. Adapting this to (2.1.1) implies using a standard
upwind scheme for the convection part and a centered discretization of the source terms.
From (2.1.6), one can expect that divergence errors will be transported out of the domain
for transparent boundary conditions. This approach does not imply stability either and
can lead to oscillations as reported in [5]. A discontinuous Galerkin based discretization
of the symmetric form (2.1.5) was proposed in [2].

In a recent paper [5], the authors discretized the symmetric form (2.1.4) by using a
first order accurate upwind finite difference scheme. The resulting scheme also implied an
upwind discretization of the convection term in (2.1.1) with an upwind discretization of
the source term. This scheme was shown to be energy stable even with variable velocity
fields and to be TVD for constant velocity fields.

Furthermore, boundary conditions were not considered either in [5] or any of the
aforementioned papers. High-order accurate schemes will lead to much better resolution
of interesting solution features and a stable discretization of the boundary conditions
(while still preserving high order of accuracy) is desirable.

Our aim in this paper is to design stable and high-order accurate schemes for initial-
boundary value problems corresponding to the magnetic induction equations by discretiz-
ing the non-conservative symmetric form (2.1.4). The spatial derivatives are approximated
by second and fourth-order SBP (Summation-By-Parts) operators. The boundary condi-
tions are weakly imposed by using a SAT (Simultaneous Approximation Term) and time
integration is performed by standard Runge-Kutta schemes. The SBP-SAT framework
has been used to obtain stable and accurate high order schemes for a wide variety of
hyperbolic problems in recent years. See [22] and the references therein for more details.

The SBP-SAT schemes use centered finite difference stencils in the interior, which
lead to oscillations in the vicinity of discontinuities. We apply well-known SBP-SAT
compatible numerical diffusion operators in case of discontinuous data.

The rest of this paper is organized as follows: In Section 2.2, we state the energy esti-
mate for the initial-boundary value problem corresponding to (2.1.4) in order to motivate
the proof of stability for the scheme. In Section 2.3, we present the SBP-SAT scheme and
show stability. Numerical experiments are presented in Section 2.4 and conclusions are
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drawn in Section 2.5.

2.2 The Continuous problem

For ease of notation, we shall restrict ourselves to two spatial dimensions in the remainder
of this paper. Extending the results to three dimensions is straightforward.
In two dimensions, the non-conservative symmetric form (2.1.4) reads

B, + AB, + A,B, — CB =0, (2.2.1)

u' 0 u? 0 —ou*  Oyut
Ay = (0 ul)’ Ag = <O u2>’ = < o —out )’
with B = (B', B%)" and u = (u!,u?)" denoting the magnetic and velocity fields respec-
tively. In component form, (2.2.1) becomes

where

(B + 0 (BY)a + (B, = —(), B + (u1), B? 022
(B%)e +u'(B%)s + w*(B%), = (u*).B" — (tl)zBQ- -
To begin with, we shall consider (2.2.1) in the domain (x,y) € Q = [0,1]%,
We augment (2.2.1) with initial conditions,
B(x,0) = Bo(x) x€Q, (2.2.3)
and Dirichlet boundary conditions,
l{ul(O,y,t)>0} (B(Ovyvt) - g(07y7t))/ l{ul(l,y,t)<0} (B(17y> t) = g(LZJ,t)), (2 5 4)

1{1t2(;r,0,t)>0} (B(‘T7 0, t) = g(xv 0, t)) ) l{uz(m,17t)<0} (B(xa 1, t) = g({L’7 1, t))

where 14 denotes the characteristic function of the set A. Note that we only impose
boundary conditions on the set where the characteristics are entering the domain.

Definition 2.2.1. Weak solution: A function B : Q — R? such that B € C([0,T]; H ()
is defined as a weak solution of (2.2.1) with initial data (2.2.3) and boundary data (2.2.4)
if it satisfies the weak formulation of (2.2.1) in Q, i.e.,

T
| [B (e i), + (o), = o) dadt + [ Bugl..0) day
/ / (TrB) ry,)‘ dydz‘—/ / (TrB) p(z,y,t ‘lldxdt—O
(2.2.5)

for all test functions p € C(Q x [0,T)). By TrB we mean the H' trace of B at the
boundary. The boundary conditions (2.2.4) are taken in the sense of H' traces.
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We shall always assume that the initial and boundary data satisfy the compatibility
conditions, i.e., specific criteria that guarantee smoothness of the solution, see [9].

Theorem 2.2.1. Assume that Bg € H(Q)), that g € H(0Q x [0,T]) for T > 0 and
that u* and u? are in H*(Q2 x [0,T]). Then there exists a function B € C([0,T], L*(Q)) N
Le([0, T); HY(SY)) which is the unique weak solution of (2.2.1) with the initial and bound-
ary conditions (2.2.3) and (2.2.4).

Furthermore, it satisfies the following stability estimate

IB(, )7 < € (HBOHip(Q) + HgHHl(BQX(O,t))) : (2.2.6)

where a is a positive constant.

Proof. The proof of this theorem is standard. Assume first that g, By and u are in C'™.
Since the compatibility conditions are satisfied, a unique solution exists by the method
of characteristics. Let (aV 0) = max{a,0} and (a A0) = min{a,0}. Multiplying the
equation by B and integrating over (2 yields
d
dt

1 1
— / B(2C’+div(u))dedy—/ u'Tr(BTB) |jj dy+/ w?Tr(BTB) }Z:) dz
Q 0 0 ’

BTB dxdy

< c/BTdedy
+/1 (u'(0,y,t) v 0) (Tr(B"B)) /1 (1,y,t) AO) (Tr(B"B)) dy
+/1 (u?(z,0,t) v 0) (Tr(B"B)) / (z,1,t) AO) (Tr(B"B)) dx

< c(/ (B"B) dady +/ g’ ds)
Q 0

for some constant ¢ depending on u and its first derivatives. Via the Gronwall inequality

we get the bound
2 2 r
2
1B )20y < € (HBoHLzm) S gas dt) |
0 ¢

Set P =B, and Q = B, applying 0, to (2.2.1) yields
P, +u'P, + v’P, = u'P +u>Q+ CP + C,B. (2.2.7)

Furthermore, P(z,y,0) = 0,Bo(z, y) and at those parts of 9Q where we impose boundary
data

ulP:Cg—gt—Ung onz=0and z =1,

wWQ=Cg—g —u’g, ony=0andy=1.
We shall also be needing P on y = 0 and 1 and Q on # = 0 and 1. These are given by g,
and g, respectively.
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Multiplying (2.2.7) with 2P and rearranging yields

P} + (u'P?)_ + (u*P?)

, = ~wP? = 20P"Q + 2PTCP +2P"C,B.
We also have an analogous equation for Q2;

Q; + (v'Q?), + (u2Q2)y = —u, Q" — 2, P"Q + 2P"CQ +2Q"C,B.
Adding these two equations we find

(P14 @)+ (o (PP Q)+ (2 (P4 Q) — R (229)

where by Holder’s inequality R has the bound

LRm%wmwgc@mwmamﬂwmwam+mumm@)

where the constant ¢ depends on u and its derivatives. By reasoning as we did with B,
we can then get the bound

d 2 2
= (1P ) + QI3 xe)) <
c (HB('vt)Hizm) + ||PH%2(Q> + ||QH§2(Q) + /89 g +g +eg dS) :
Via Gronwall’s inequality and the bounds on ||B||;. we find
1P 8)l|720) + 1QE D)1 72(q) < Const.,

where the constant depends on the H*(€) norm of By and g and on u and its derivatives.
This means that we have an energy estimate

1B, )l ) < o (IBollin ) + gl ooy -

where C; is a finite constant depending on ¢, u and its derivatives.

Then, for a general initial data, velocity fields and boundary conditions, we can use a
standard approximation argument ([10]) and the above estimate to pass to the limit and
prove the existence and uniqueness of weak solutions. O

Remark 2.2.1. The above theorem has been proved in the unit square. It can be easily
extended to domains with smooth (i.e., C' boundaries) by using cut-off functions and
mappings between the domain and the upper-half space. See [19] and other references
therein for details.
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2.3 Semi-discrete Schemes

As stated before, we will approximate (2.2.1) with SBP-SAT finite difference schemes.
We start by defining a SBP operator approximating the first derivative of a continuous
function w(x) in one space dimension. Let {z;}_, be equidistant points in [0, 1] such that
x; = ih where h = 1/n. We organize the values of w at {z;} in a vector w” (t) = (wp, ..., wy)
where w; = w(x;). Then , we define,

Definition 2.3.1. A difference approximation (given by a (n+1) x (n+ 1) matriz D) for
the first derivative is called a Summation-By-Parts (SBP) operator if D = P71Q fornxn
matrices P and Q, where P >0, P = PT and Q + QT = B = diag(-1,0,0,...,0,0,1).

Moreover, P must define a scalar product (w,v) = wT Pv for which the corresponding
norm, |[w|)% = (w,w), is equivalent to the standard 1>-norm, |[w||; = h 31, w?.

SBP operators of different orders of accuracy are presented in several papers, see the
references in e.g. [22]. To discretize (2.2.1), we introduce equidistant meshes in the = and
y directions with N and M mesh points and Az = 1/N and Ay = 1/M. The discrete
solution consists of a column vector of length 2(N + 1)(M + 1) denoted V = (V1, V3T,
where V? is a vector of length (N 4 1)(M 4 1) ordered as

V= (Vi Vits - Vans Vi one s Vi) -
and Vf] is the discrete solution at (z;,y;) for £ =1, 2. We will use the norm
lwlf = w” (P @ Py)w

where we have introduced the Kronecker product, which is defined as follows:
Let A and C' be n x n matrices and B and D be m x m matrices. Then A ® B is the

nm X nm matrix
(LHB e CLlnB

(A ® B ) - : c. :
amB ... a.B
Furthermore, the following rules hold; (A® B)(C®D) = (AC®BD), (A®B)+(C®D) =
(A+C)® (B+ D) and (A® B)' = (AT @ BY).

To define discrete boundary conditions, we need some further notation. For real
numbers o;, introduce the 2 x 2 matrices

Eo,y =011, EN,y = 091y, Ez,o = 03l, Ez,N = oyls,

where the I, is the 2 x 2 identity matrix and the numbers o; are to be determined later.
We also need (M + 1) x (M + 1) matrices Fy,, and Fy,

10 0 0 -1
Foo=11 o o =10 1|’

o
o
o
o
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and (N 4 1) x (N + 1) matrices F,o and F; y,

10 0 0 - 1
0 0 0 - 0
F:I:,O - 10 - ol’ F:L’,]\/I = 0 - 1
0 0 0 0

Next set
EO,y = I:c ® F(),y7 EN,y = Iz ® FN,y7 Ez() = F:c,[) ® [y7 and Ew,M = Fz,M ® [y

where I, and I, are (N41) x (N+1) and (M +1) x (M +1) identity matrices respectively
and define

A, —[2®d1ag(u00 U01 ..... U0N7U107---7---7UN,M)

2
Ay - -[2 ® dlag (u0’07u0,17 s '7u0,N7u1,07 AR "U’N,]\I) .

Define the matrix C' by,

_ (- Lo (7)) (L ( 71@7}))
€= < ((PJIQ!I})®[‘7J)U2 7(( Q ) ) )

Let g be a column vector of the same length as V| where we store the boundary values
at the appropriate places. Then we can describe the SBP-SAT scheme as

WV A (L@ (P'Q.) L)V 4+ Ay (Lo L@ (P'Q,))V+CV
=%, @ (P, 1,) ® Eoy (V—g) +Zny @ (P,E @ 1) ® Eny (V — g) (2.3.1)
+30@ (LOP ") @En(V—9)+Sen® (L@ P ") @ En (V—yg),

Theorem 2.3.1. Assume that the velocity field u is a constant given by u = (u', u®)?,

and let V be the semi-discrete solution defined by the scheme (2.3.1). Let ub* = (ue v 0)
and '~ = (1/ A 0), for 0 =1, 2. If the penalty parameters satisfy

wubt b~ udt u—

o1 < 5 02 < ——5 ) O3 < 5 and o4 < - (2.3.2)
there exists positive constants o and K such that
t
VO < Bl + [ [ g(t.a)dsar (233)
0

and the scheme (2.3.1) is stable.
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Proof. The proof is similar to the standard way of proving stability of SBP-SAT schemes
(see [22]) and follows the proof for obtaining energy stability of the continuous problem
in theorem 2.2.1. We outline the proof for the sake of completeness. For simplicity, we
consider the case of constant velocities by setting C' = 0 in (2.3.1) We start by multiplying
(2.3.1) with V' (I, ® P, ® P,) to obtain,

VI (I, ® P, ® P,) 0,V

= VIA®QeP)V+VI(A,©P,®Q,)V
(Z0y @ P @ 1) Eoy + (Sny ® Pyt @ 1) Eyy,
+(E00 1 ® PJI)E:E,O + (N ® PJI)Ez,]\l

(2.3.4)
Adding this to its transpose and using the definition of SBP operators, we obtain

+Vi(L,® P,®P)®

d 2
— |V
=~V
=-VIM@B,oP)V+ VI (AP, ®B,)V
(203 & Pa;1 & ]y) EO,y + (EN,y ® P;1 ® [y) EN,y

+2VT(L,® P,® P,) ®
" Wel (B0 ®L® P, ) Erg+ (Bon © L ® Py ') Epy

1%

which implies

CNVIE = ot (V)" Py (V) — (V)T Py (V) (V) Py (2,)
—ut (VE,)" Py (VE,) + (Vi) P (Vi) = (Vi) P (Vi)
+u’ (VzQ,O)T Py (Vi) —u? (‘@%N)T Py (Vi)
2[00 (V)" P (V) + (V) B (V) + 02 (V)" By (V)
+ o (V2B (VE,) + s (VA P (Vi) + (V) P (V2)

o (V)" P (V) (V)T P (V20)].

Using (2.3.2) and integrating in time gives the energy estimate (2.3.3). O

Remark 2.3.1. The above proof of stability assumes a constant velocity field. A proof of
stability with a general velocity fields has been obtained in a recent paper [8] by using the
principle of frozen coefficients. The resulting stability estimate will lead to an exponential
growth of energy (similar to (2.2.6)) due to the presence of lower order terms.

We conclude this section with a few comments. For simplicity, we have only considered
Cartesian meshes. However, the proofs are readily generalized to curvilinear grids by
transforming the domain to a Cartesian. A stability proof is then obtained by freezing
the coefficients. However, that requires P to be diagonal, [21]. Furthermore, multi-block
grids can also be handled and stable interfaces derived in a similar way as in, [16].
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2.4 Numerical Experiments

We test the SBP-SAT schemes of the previous section on a suite of numerical experi-
ments in order to demonstrate the effectiveness of these schemes. We will use two differ-
ent schemes : SBP2 and SBP4 scheme which are second-order (first-order) and fourth
order (second-order) accurate in the interior (boundary) resulting in an overall second
and third-order of accuracy. Time integration is performed by using a second order ac-
curate Runge-Kutta scheme at a C'F'L number of 0.45 for all numerical experiments. We
found that using a fourth order accurate Runge-Kutta scheme resulted in negligible dif-
ferences in the numerical results. The schemes have bounded errors, a typical behavior
for hyperbolic equations with characteristic boundary conditions as shown in [15]. Errors
are propagated through the domain and leave the domain on account of the transparent
boundaries. Hence, errors do not accumulate in time. On small domains, spatial errors
become dominant.

Numerical experiment 1: In this experiment, we consider (2.2.1) with the divergence-
free velocity field u(z,y) = (—y,z)?. The exact solution can be easily calculated by the
method of characteristics and takes the form

B(x,t) = R()Bo(R(~1)x), (2.4.1)

where R(t) is a rotation matrix with angle ¢ and represents rotation of the initial data
about the origin.

We consider the same test setup as in [11] and [5] by choosing the divergence free
initial data,

Bo(z,y) =4 <xiyl> ellem1aP), (242)
2
and the computational domain [—1, 1] x [—1, 1]. Since the exact solution is known in this
case, one can in principle use this to specify the boundary data g. Instead, we decided
to mimic a free space boundary (artificial boundary) by taking g = 0. (which is a good
guess at a far-field boundary).

We run this test case with SBP2 and SBP4 schemes and present different sets of
results. In Figure 2.4.1, we plot |B| = (|B'|> + |B??)"/? at times t = 7 (half-rotation)
and ¢t = 27 (one full rotation) with the SBP2 and SBP4 schemes. As shown in this
figure, SBP2 and SBP4 schemes resolve the solution quite well. In fact, SBP4 is very
accurate and keeps the hump intact throughout the rotation. In Table 2.4.1, we present
percentage relative errors in /2. The errors are computed at time ¢t = 27 (one rotation) on
a sequence of meshes for both the SBP2 and SBP4 schemes. The results show that the
errors are quite low, particularly for SBP4 and the rate of convergence approaches the
expected values of 2 for SBP2 and 3 for SBP4. Furthermore, the order of accuracy is
unaffected at these resolutions by using zero Dirichlet boundary data instead of the exact
solution at the boundary.

In order to compare the SBP schemes of this paper with other existing schemes, we
choose to compute the solutions for this problem with both the first- and the second-order
divergence-preserving scheme of [11], which we label as the TF and TF2 schemes. Fur-
thermore, we compute the solutions using the first order stable upwind scheme designed
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Figure 2.4.1: Numerical results for |B| in experiment 1.

Grid size ‘ SBP2 rate SBP4 rate
40x40 6.9 x 10! 8.0 x 10°
80x 80 2.1 x 10t 1.7 50x 107t 4.0
160x160 5.5 x 10° 2.0 45%x 1072 35
320x320 1.3 x 10° 2.0 51x10~% 3.1
640x640 3.3x107 2.0 6.4x107* 3.0

Table 2.4.1: Relative percentage errors in [? for |B| at time ¢ = 27 and rates of convergence
for numerical experiment 1 with SBP2 and SBP4 schemes.
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in [5], labeled the SUS scheme. The relative errors with each of these schemes are shown
in Table 2.4.2. Results in Tables 2.4.1 and 2.4.2 show that the TF and SUS schemes

Grid size | SUS TF TF2
40%40 8.6 x 101 7.6 x 101 1.8 x 10*
80%80 7.3 x 10 6.4 x 10 1.3 x 10!

160x 160 5.4 x 101 4.7 x 10! 3.0 x 10°

320%320 3.6 x 10 3.3 x 10 1.0 x 10°

640 %640 2.0 x 10 1.4 x 10! 2.7 x 1071

Table 2.4.2: Relative percentage errors in (2 for |B| at t = 27 and for numerical experiment
1 with the SUS, TF, TF2, SBP2 and the SBP4 schemes.

lead to similar errors and these errors are considerably larger than the errors generated by
the TF2 and SBP2 schemes, while the errors generated by the SBP4 scheme are much
smaller again.

A fair comparison of the the five schemes SUS, TF, TF2, SBP2 and SBP4 requires
information on the computational work with each scheme for the same error level. We
observe from tables 2.4.1 and 2.4.2 that for a given relative error of approximately 20
percent, the first-order SUS scheme requires a 640 x 640 mesh, the TF scheme requires
a 500 x 500 mesh (based on extrapolation from table 2.4.2), whereas both the second-
order schemes require meshes coarser than a 50 x 50 mesh. The fourth-order scheme
yields similar error levels on even coarser meshes. Thus, the second-order schemes require
about 1% of the total grid points to the first-order schemes to produce comparable errors.
Even taking into account that the second order schemes use more operations for each grid
point, this still makes the second order schemes at least 25 — 30 times more efficient than
the first order schemes. Similarly an error level of about one percent is attained with
SBP2 on a 320 x 320 mesh, with TF2 on a similar 320 x 320 mesh and with SBP4 on a
50 x 50 mesh. Thus the second order schemes need about 36 times more grid points to
produce errors similar to those of the fourth order schemes. Taking extra work for the
fourth-order scheme per grid point into account, we still get that the fourth-order scheme
is roughly 10 times more efficient than the second-order schemes. These numbers are
approximations but display a clear qualitative trend i.e., it is much more efficient to use
high-order schemes for the induction equations.

As the solution (2.4.1) in this case is smooth, it is also a solution for the constrained
form (2.1.3). Furthermore, the initial data is divergence free and so is the exact solu-
tion. We did not attempt to preserve any particular form of discrete divergence while
designing the SBP schemes (2.3.1). A natural thing would be show that some form of
discrete divergence produced by the schemes was bounded in /2. We were unable to ob-
tain such a divergence bound for (2.3.1) in this paper. A related SBP-SAT scheme for the
“conservative” symmetric form (2.1.5) with SBP operators for discretizing spatial deriva-
tives coupled with a novel discretization of the source terms in (2.1.5) was shown to have
bounded discrete divergence in a recent paper [8].

In the absence of a rigorous divergence bound, we proceed to examine how divergence
errors generated by the SBP schemes behave and whether they have any impact on the
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quality of the discretization. We define the following discrete divergence,
divp(V) = (P, 'Qe @ I)V' + (I, ® P'Q,) V2.

This corresponds to the standard centered discrete divergence operator at the correspond-
ing order of accuracy. The divergence errors in [? and rates of convergence at time ¢ = 27
for the SBP2 and SBP4 schemes on a sequence of meshes are presented in Table 2.4.3.
From Table 2.4.3, we conclude that although the initial divergence is zero, the discrete

QGrid size ‘ SBP2 rate SBP4 rate
20%20 1.0 x 10° 7.3 % 1071
40x40 8.0x 107" 04 1.2x 107" 26
80x 80 27x 1071 1.6 82x 1073 38

160x 160 7.0x1072 2.0 1.0x 1073 3.0

320%320 25x1072 15 1.7x 107 26

Table 2.4.3: Numerical Experiment 1: Divergence (errors) in [? and rates of convergence
at time ¢ = 27 for both the SBP2 and SBP4 schemes.

divergence computed with both the SBP2 and SBP4 schemes is not zero. However, the
divergence errors are very small even on fairly coarse meshes and converge to zero at a
rate of 1.5 and 2.5 for SBP2 and SBP4 schemes respectively. A simple truncation error
analysis suggests that these rates for the SBP2 and SBP4 schemes are optimal. The
quality of the approximations is good and the rates of convergence do not seem to suffer
from not preserving any form of discrete divergence.

In order to compare with existing schemes, we compare the divergence errors gener-
ated by the SUS, TF and the TF2 schemes with the SBP2 and the SBP4 schemes in
table 2.4.4. From Table 2.4.4, we can draw the following conclusions about divergence

Grid size | SUS TF TF2

40x40 | 1.1x10°1 2.7x10°2 1.2x10°2
80x80 | 1.3x107" 1.7x107% 4.0x1073
160160 | 1.4x107! 1.4x1072 2.4x1073
320%320 | 1.1x107! 1.2x1072 9.7x10~4

Table 2.4.4: Numerical Experiment 1: The discrete divergence divp in [? at t = 27 for
the SUS, TF and T F2 schemes.

errors. The SUS scheme is not tailored to preserve any form of discrete divergence. The
divergence errors generated by this scheme seems to be low on coarse meshes. The T'F
and TF2 schemes are designed to preserve a special form of discrete divergence which
is different from the standard central form. Nevertheless, the analysis presented in [11]
suggested that the errors in the standard divergence operator will also be quite low. This
is indeed the case. On the coarser meshes, the divergence is much larger for the SBP2
scheme than the TF' schemes, but from Table 2.4.2 we see that the errors in the solution
are similar.
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Furthermore, the divergence errors converge quickly for the SBP4 scheme, as well
as as the for the TF2 scheme. The above results indicate that controlling some form of
discrete divergence is not necessary to approximate solutions of the magnetic induction
equations in a stable and accurate manner.

Next, we consider long time integration. The energy estimate (2.3.3) suggests that
the energy of the approximate solutions can grow exponentially in time. In order to test
this we computed approximate solutions with the SBP2, SBP4 and the TF2 schemes
till time ¢ = 1007, i.e., for fifty full rotations on a 100 x 100 mesh. The numerical results
in are presented in Figure 2.4.2 and Table 2.4.5. These computations were performed
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Figure 2.4.2: Numerical results for |B| in experiment 1.

on a fixed 100 x 100 mesh. In Figure 2.4.2, we compare the SBP2 and SBP4 schemes
after five and fifty rotations respectively. We see that after 5 rotations, SBP2 gives a
“hump” which is somewhat smeared and with a pronounced asymmetry. On the other
hand, the hump produced by the SBP4 scheme is much more accurate. As shown in
Table 2.4.5, the absolute errors with the SBP4 scheme are much lower than the errors
due to the second-order schemes SBP2 and TF2. In fact, the errors with SBP2 after
just five rotations are about three times the error with SBP4 after fifty rotations. This
experiment makes a strong case for using high-order schemes for problems requiring long
time integration.

Numerical Experiment 2: In the previous numerical experiment, the hump was con-
fined to the interior of the domain during the rotation. Hence, the choice of zero Dirichlet
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ot SBP2 SBP4 TEF?2
t=1 2.1 x 10! 5.1 x 1071 8.8 x 10°
t=5 7.7 x 10! 2.7 x 10° 3.2 x 10!
t=10 1.0 x 102 4.7 x 10° 5.0 x 10!
t=15 1.1 x 102 6.6 x 10° 6.3 x 10
t=20 1.2 x 102 8.7 x 10° 7.2 x 10
t =30 1.2 x 102 1.9 x 10* 8.4 x 10!
t =40 1.3 x 102 3.1 x 10! 9.2 x 10!
t =50 1.4 x 102 4.3 x 10! 1.0 x 102

Table 2.4.5: Relative percentage [? errors in |B| with SBP2, SBP4 and T F2 for numerical
experiment 1.

data at the boundary was reasonable and led to stable and accurate approximations. In
order to illustrate the effect of the boundary better, we choose the computational domain
[0,1] x [0, 1] and use the same velocity field and initial data as in the previous experiment.
Now, the hump “exits” the domain at one part of the boundary (including a corner) and
will re-enter the domain from another part of the boundary. The choice of boundary
discretization becomes crucial in this case.

We select the exact solution (2.4.1) restricted to the boundary as the Dirichlet bound-
ary data in (2.3.1). In Figure 2.4.3, the approximate solutions computed with both SBP2
and SBP4 on a 100 x 100 mesh are plotted at time ¢ = 7/2 (quarter rotation) and time
t = 27 (full rotation). As shown in this figure, both schemes perform very well. The hump
at both the exit as well as the re-entry is clearly resolved with no noticeable numerical
artefacts or reflections.

Table 2.4.6: Numerical experiment 2: Relative percentage errors for |BJ in [? and rates of

Grid size ‘ SBP2 rate SBP4 rate
10x10 2.5 x 10t 1.1 x 10!
20x20 5.8 x 10° 2.1 1.5 x 10° 2.9
4040 1.3 x 10° 2.0 1.6 x 107" 3.3
80x 80 3.0x 107 2.0 1.6 x 1072 3.2
160x160 7T4x107%2 2.0 1.9x 1073 3.1

convergence for both SBP2 and SBP4.

Table 2.4.7: Numerical experiment 2: Divergence (errors) in [? and rates of convergence

Grid size ‘ SBP2 rate SBP4 rate
10x10 6.4 x 107" 9.7 x 1072
20% 20 39x107t 0.7 24x1072 2.0
40x 40 0.1x1072 22 1.9x 103 3.6
8080 26x107%2 1.8 3.0x 107 27
160x 160 89x 1073 1.6 51x107% 2.5

for both SBP2 and SBP4 at time t = 27.



2.4. NUMERICAL EXPERIMENTS

" -

0 01 02 03 04 05 06 07 08 09 1 o 00 01 02 03 04 05 06 07 08 09 1 °
(a) SBP2, t = 7/2 (b) SBP2, t = 27

" -

o o
0 o1 02 03 04 05 06 07 08 09 1

(c) SBP4,t =7/2 (d) SBP4,t =27

Figure 2.4.3: Numerical results for experiment 2. Mesh size 100 x 100.

o7



58 CHAPTER 2. MAGNETIC INDUCTION EQUATION

As shown in Table 2.4.6, the errors are low after one full rotation for both the SBP2
and SBP4 schemes. In fact, the size of relative errors is lower than in the previous
numerical experiment. As expected, the rates of convergence tend to 2 and 3 for SBP2
and SBP4 respectively. In Table 2.4.7 the divergence errors and their convergence rates
are listed. They are small and the convergences approach the expected values 1.5 and 2.5.

On the other hand, when we tried to compute this example with the divergence pre-
serving TF and TF2 schemes, the solution blew up on account of boundary instabilities.

Numerical Experiment 3: (Discontinuous solutions.) As remarked earlier, the
magnetic induction equations (2.2.1) are a sub-model in the nonlinear MHD equations.
As a consequence, one must solve the induction equation with both discontinuous velocity
fields and initial data. It is therefore interesting to see how well the SBP-SAT schemes
handle discontinuous velocity fields and initial data.

The SBP operators use centered finite differences in the interior. It is well known that
using central differences leads to oscillations around discontinuities. Therefore the SBP
schemes cannot be used directly in this regime, see [12] for details. To calculate solutions
with discontinuities, one adds a small amount of explicit numerical diffusion that retain
the accuracy of the first derivative SBP approximations as well as maintain the energy
stability of the SBP scheme. We will use these operators together with the SBP2 and
SBP4 schemes in order to compute discontinuous solutions of the magnetic induction
equations.

The second-order (fourth-order) SBP operator for the first derivative with a second-
order (fourth-order) numerical diffusion operator gives an approximation which is formally
second-order (fourth-order) accurate in the interior of the computational domain. It turns
out that a different scaling (dividing by the mesh size) of the numerical diffusion operator
leads to a first order (third-order) “upwind” scheme. We will test all these numerical
diffusion operators a numerical experiment first described in [5].

The computational domain is [0, 1] x [0, 1]. Consider the constant velocity field, u =
(1,2)” and the discontinuous initial data,

2 ifa>y,
By(x,y) = Bj(x,y) = ,
0 otherwise.

In this case, the exact solution (see [5]) of (5.1.1) reads
B({IS, Y, t) = Bo(l' —t, Y= 2t)

The initial discontinuity simply moves along the diagonal of the domain. We use the exact
solution restricted to the boundary as the Dirichlet boundary data. Tests with generic
SBP-SAT schemes, (2.3.1), showed that the approximate solutions were very oscillatory,
and we damp these oscillations by adding numerical diffusion.

We test the SBP2 (SBP4) scheme with the standard second-order (fourth-order)
numerical diffusion operator as well as the scaled numerical diffusion operator to obtain
the first-order (third-order) SBP1 and SBP3 schemes. The results on a 100 x 100 mesh
at time t = 0.5 are plotted in Figure 2.4.4. A plot at this time is of interest as some
part of the solution has interacted with the boundary and exited the domain, whereas
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Figure 2.4.4: Numerical results for B!(x,y,0.5) in experiment 3.
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most of the front is still inside the domain. From Figure 2.4.4, we see that the boundary
discretization works well in all cases and does not lead to any significant oscillations in
the domain. The SBP1 scheme is the most dissipative with significant smearing at the
discontinuity. However, this scheme also has no over/under shoots or oscillations and the
solution is TV D. The SBP2 scheme with second-order numerical diffusion operator is
oscillatory near the discontinuity with dispersive waves on both sides of it. The smearing
is considerably less than that of the SBP1 scheme. The SBP4 scheme with standard
fourth-order numerical diffusion is even more oscillatory and leads to a larger overshoot.
The SBP3 scheme damps these oscillations somewhat and still keeps the sharpness at
the discontinuity making it an acceptable alternative.

2.5 Conclusion

We have considered the magnetic induction equations that arise as a submodel in the MHD
equations of plasma physics. Various forms of these equations were presented including
the symmetric forms that are well-posed with general initial data and Dirichlet boundary
conditions.

Standard numerical methods of the finite difference/finite volume type have dealt with
discretizations of the constrained form (2.1.3) and attempted to preserve some form of
the divergence constraint.

We describe SBP-SAT based finite difference schemes for the initial- boundary value
problem corresponding to the magnetic induction equations. These schemes were based
on the non-conservative symmetric form (2.1.4) and use SBP finite difference operators
to approximate spatial derivatives and a SAT technique for implementing boundary con-
ditions. The resulting schemes were energy stable and higher order accurate.

These schemes were tested on a series of numerical experiments, which illustrated their
stability and high-order of accuracy. Interesting solution features were resolved very well.
The fourth-order scheme was found to be well suited for long time integration problems.
Despite the fact that the schemes were not preserving any particular form of discrete
divergence as well as the lack of a rigorous discrete divergence bound, the divergence
errors generated by the schemes were quite low and converged to zero at the expected
rates when the mesh was refined. The schemes were compared with two existing lower
order schemes and one divergence preserving second order scheme. Despite lacking any
divergence bounds, the SBP schemes performed at least as well as the schemes with a
divergence bound.

The numerical experiments indicate that the SBP-SAT framework is effective in
approximating solutions of the magnetic induction equations to a high order of accuracy.
In the future we plan to extend these schemes to magnetic induction equations with
resistivity.
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