11 research outputs found

    Regulación de la cadena de transporte de electrones bajo condiciones de hipoxia

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de lectura: 29 de Noviembre de 2012

    Metabolic remodeling in astrocytes: paving the path to brain tumor development

    Full text link
    The brain is a highly metabolic organ, composed of multiple cell classes, that controls crucial functions of the body. Although neurons have traditionally been the main protagonist, astrocytes have gained significant attention over the last decade. In this regard, astrocytes are a type of glial cells that have recently emerged as critical regulators of central nervous system (CNS) function and play a significant role in maintaining brain energy metabolism. However, in certain scenarios, astrocyte behavior can go awry, which poses a significant threat to brain integrity and function. This is definitively the case for mutations that turn normal astrocytes and astrocytic precursors into gliomas, an aggressive type of brain tumor. In addition, healthy astrocytes can interact with tumor cells, becoming part of the tumor microenvironment and influencing disease progression. In this review, we discuss the recent evidence suggesting that disturbed metabolism in astrocytes can contribute to the development and progression of fatal human diseases such as cancer. Emphasis is placed on detailing the molecular bases and metabolic pathways of this disease and highlighting unique metabolic vulnerabilities that can potentially be exploited to develop successful therapeutic opportunitiesThis work was supported by grants to Dr. Balsa from the Spanish Government, Ministerio de Ciencia e Innovacion ´ (PID2019-110766GAI00), European Union’s Horizon 2020 research and innovation program (ERC-2020-STG-948478) and Fundacion ´ CRIS contra el cancer (PR_EX_2022-01

    Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting complex i activity

    Get PDF
    The fine regulation of mitochondrial function has proved to be an essential metabolic adaptation to fluctuations in oxygen availability. During hypoxia, cells activate an anaerobic switch that favors glycolysis and attenuates the mitochondrial activity. This switch involves the hypoxia-inducible transcription factor-1 (HIF-1). We have identified a HIF-1 target gene, the mitochondrial NDUFA4L2 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2). Our results, obtained employing NDUFA4L2-silenced cells and NDUFA4L2 knockout murine embryonic fibroblasts, indicate that hypoxia-induced NDUFA4L2 attenuates mitochondrial oxygen consumption involving inhibition of Complex I activity, which limits the intracellular ROS production under low-oxygen conditions. Thus, reducing mitochondrial Complex I activity via NDUFA4L2 appears to be an essential element in the mitochondrial reprogramming induced by HIF-1This work was supported by Ministerio de Ciencia e Innovación (SAF 2007-06592, SAF2010-14851), Comunidad Autónoma de Madrid (SAL 2006/ 0311), Metoxia Project-Health (F2 2009-222741), and Recava Network (RD 06/0014/0031) to M.O.L.; PS09/00101 and CP07/00143 to A.M.-R.; PI060701, PS09/00116, and CP08/00204 to S.C.; BFU2008-03407/BMC to J.A.; SAF2009-08007 to J.A.E.; and CSD2007-00020 to A.M.-R. and J.A.E. The CNIC is supported by the Instituto de Salud Carlos III-MICINN and the Pro-CNIC Foundation. We are grateful to Mike Murphy (Mitochondrial Biology Unit, MRC, Cambridge, UK) for the gift of MitoQ. We also thank Stephen Y. Chan and Joseph Loscalzo (Harvard Medical School, Boston, MA) for providing us ISCU expression vector

    Immune response after SARS-CoV-2 vaccination in patients with inflammatory immune-mediated diseases receiving immunosuppressive treatment

    No full text
    Abstract Background Real world data on the response to the SARS-CoV-2 vaccine in patients with immunomediated diseases (IMIDs) treated with immunesuppressants is of great interest because vaccine response may be impaired. The main aim was to study the humoral and cellular immune response after SARS-CoV-2 vaccination in patients with IMIDs treated with immunosuppressants. The secondary aim was to describe the frequency of SARS-CoV-2 infections after vaccination in these patients. Material and methods This is an observational study including 86 patients with IMIDs. All patients were treated with biologic or targeted synthetic disease-modifying antirheumatic drugs [b/tsDMARDs: TNF inhibitors (TNFi), rituximab, anti-interleukin 6 receptor (anti-IL6R) or JAK inhibitors (JAKi)]. Demographic and clinical information were collected. After 4–6 weeks of 2nd and 3rd vaccine doses, humoral response was assessed using the Thermo Scientific ELiA SARS-CoV-2-Sp1 IgG Test. Also, in patients with serum SARS-CoV-2 antibody levels under 100UI/ml, cellular response was analyzed using the QuantiFERON SARS-CoV-2 Starter Pack. Results A total of 86 patients under b/tsDMARDs and 38 healthy controls were included. Most patients received TNFi (45 with TNFi, 31 with rituximab, 5 with anti-IL6R and 5 with JAKi). SARS-CoV-2 antibodies (Ab) were present in an 86% of patients with IMIDs and in 100% healthy controls (p = 0.017). However, 12 (14%) patients had undetectable SARS-CoV-2 Ab levels, all treated with rituximab. In addition, SARS-CoV-2 Ab (IU/ml) were statistically lower in patients (Mdn (IQR): 59.5 (17–163) in patients vs 625 (405–932) in controls, p < 0.001). Patients treated with rituximab had lower Ab levels than those treated with TNFi and controls (p < 0.001). The cellular response to SARS-CoV-2 vaccine was evaluated in 30 patients. Eleven patients had a positive cellular response, being more frequent in patients treated with rituximab (p = 0.03). SARS-CoV-2 infection was reported in 43% of patients and 34% of controls after vaccination. Only 6 (7%) patients required hospitalization, most of whom treated with rituximab (67%). Conclusion SARS-CoV-2 antibody levels were lower in patients than in controls, especially in patients treated with rituximab. A cellular response can be detected despite having a poor humoral response. Severe infections in vaccinated patients with IMIDs are rare, and are observed mainly in patients treated with rituximab

    Role of Mitochondrial Complex IV in Age-Dependent Obesity

    No full text
    Aging is associated with progressive white adipose tissue (WAT) enlargement initiated early in life, but the molecular mechanisms involved remain unknown. Here we show that mitochondrial complex IV (CIV) activity and assembly are already repressed in white adipocytes of middle-aged mice and involve a HIF1A-dependent decline of essential CIV components such as COX5B. At the molecular level, HIF1A binds to the Cox5b proximal promoter and represses its expression. Silencing of Cox5b decreased fatty acid oxidation and promoted intracellular lipid accumulation. Moreover, local in vivo Cox5b silencing in WAT of young mice increased the size of adipocytes, whereas restoration of COX5B expression in aging mice counteracted adipocyte enlargement. An age-dependent reduction in COX5B gene expression was also found in human visceral adipose tissue. Collectively, our findings establish a pivotal role for CIV dysfunction in progressive white adipocyte enlargement during aging, which can be restored to alleviate age-dependent WAT expansion.publisher: Elsevier articletitle: Role of Mitochondrial Complex IV in Age-Dependent Obesity journaltitle: Cell Reports articlelink: http://dx.doi.org/10.1016/j.celrep.2016.08.041 content_type: article copyright: © 2016 The Authors.status: publishe

    Role of Mitochondrial Complex IV in Age-Dependent Obesity.

    No full text
    Aging is associated with progressive white adipose tissue (WAT) enlargement initiated early in life, but the molecular mechanisms involved remain unknown. Here we show that mitochondrial complex IV (CIV) activity and assembly are already repressed in white adipocytes of middle-aged mice and involve a HIF1A-dependent decline of essential CIV components such as COX5B. At the molecular level, HIF1A binds to the Cox5b proximal promoter and represses its expression. Silencing of Cox5b decreased fatty acid oxidation and promoted intracellular lipid accumulation. Moreover, local in vivo Cox5b silencing in WAT of young mice increased the size of adipocytes, whereas restoration of COX5B expression in aging mice counteracted adipocyte enlargement. An age-dependent reduction in COX5B gene expression was also found in human visceral adipose tissue. Collectively, our findings establish a pivotal role for CIV dysfunction in progressive white adipocyte enlargement during aging, which can be restored to alleviate age-dependent WAT expansion

    Image_1_Exploring candidate biomarkers for rheumatoid arthritis through cardiovascular and cardiometabolic serum proteome profiling.tiff

    No full text
    IntroductionRA patients are at higher risk of cardiovascular disease, influenced by therapies. Studying their cardiovascular and cardiometabolic proteome can unveil biomarkers and insights into related biological pathways.MethodsThis study included two cohorts of RA patients: newly diagnosed individuals (n=25) and those with established RA (disease duration >25 years, n=25). Both cohorts were age and sex-matched with a control group (n=25). Additionally, a longitudinal investigation was conducted on a cohort of 25 RA patients treated with methotrexate and another cohort of 25 RA patients treated with tofacitinib for 6 months. Clinical and analytical variables were recorded, and serum profiling of 184 proteins was performed using the Olink technology platform. ResultsRA patients exhibited elevated levels of 75 proteins that might be associated with cardiovascular disease. In addition, 24 proteins were increased in RA patients with established disease. Twenty proteins were commonly altered in both cohorts of RA patients. Among these, elevated levels of CTSL1, SORT1, SAA4, TNFRSF10A, ST6GAL1 and CCL18 discriminated RA patients and HDs with high specificity and sensitivity. Methotrexate treatment significantly reduced the levels of 13 proteins, while tofacitinib therapy modulated the expression of 10 proteins. These reductions were associated with a decrease in DAS28. Baseline levels of SAA4 and high levels of BNP were associated to the non-response to methotrexate. Changes in IL6 levels were specifically linked to the response to methotrexate. Regarding tofacitinib, differences in baseline levels of LOX1 and CNDP1 were noted between non-responder and responder RA patients. In addition, response to tofacitinib correlated with changes in SAA4 and TIMD4 levels. ConclusionIn summary, this study pinpoints molecular changes linked to cardiovascular disease in RA and proposes candidate protein biomarkers for distinguishing RA patients from healthy individuals. It also highlights how methotrexate and tofacitinib impact these proteins, with distinct alterations corresponding to each drug’s response, identifying potential candidates, as SAA4, for the response to these therapies.</p

    Table_1_Exploring candidate biomarkers for rheumatoid arthritis through cardiovascular and cardiometabolic serum proteome profiling.docx

    No full text
    IntroductionRA patients are at higher risk of cardiovascular disease, influenced by therapies. Studying their cardiovascular and cardiometabolic proteome can unveil biomarkers and insights into related biological pathways.MethodsThis study included two cohorts of RA patients: newly diagnosed individuals (n=25) and those with established RA (disease duration >25 years, n=25). Both cohorts were age and sex-matched with a control group (n=25). Additionally, a longitudinal investigation was conducted on a cohort of 25 RA patients treated with methotrexate and another cohort of 25 RA patients treated with tofacitinib for 6 months. Clinical and analytical variables were recorded, and serum profiling of 184 proteins was performed using the Olink technology platform. ResultsRA patients exhibited elevated levels of 75 proteins that might be associated with cardiovascular disease. In addition, 24 proteins were increased in RA patients with established disease. Twenty proteins were commonly altered in both cohorts of RA patients. Among these, elevated levels of CTSL1, SORT1, SAA4, TNFRSF10A, ST6GAL1 and CCL18 discriminated RA patients and HDs with high specificity and sensitivity. Methotrexate treatment significantly reduced the levels of 13 proteins, while tofacitinib therapy modulated the expression of 10 proteins. These reductions were associated with a decrease in DAS28. Baseline levels of SAA4 and high levels of BNP were associated to the non-response to methotrexate. Changes in IL6 levels were specifically linked to the response to methotrexate. Regarding tofacitinib, differences in baseline levels of LOX1 and CNDP1 were noted between non-responder and responder RA patients. In addition, response to tofacitinib correlated with changes in SAA4 and TIMD4 levels. ConclusionIn summary, this study pinpoints molecular changes linked to cardiovascular disease in RA and proposes candidate protein biomarkers for distinguishing RA patients from healthy individuals. It also highlights how methotrexate and tofacitinib impact these proteins, with distinct alterations corresponding to each drug’s response, identifying potential candidates, as SAA4, for the response to these therapies.</p
    corecore