78 research outputs found
Spatial and Temporal Patterns of Mercury Accumulation in Lacustrine Sediments across the Laurentian Great Lakes Region
Data from 104 sediment cores from the Great Lakes and âinland lakesâ in the region were compiled to assess historical and recent changes in mercury (Hg) deposition. The lower Great Lakes showed sharp increases in Hg loading c. 1850-1950 from point-source water dischargers, with marked decreases during the past half century associated with effluent controls and decreases in the industrial use of Hg. In contrast, Lake Superior and inland lakes exhibited a pattern of Hg loading consistent with an atmospheric source - gradual increases followed by recent (post-1980) decreases. Variation in sedimentary Hg flux among inland lakes was primarily attributed to the ratio of watershed area: lake area, and secondarily to a lakeâs proximity to emission sources. A consistent region-wide decrease (~20%) of sediment Hg flux suggests that controls on local and regional atmospheric Hg emissions have been effective in decreasing the supply of Hg to Lake Superior and inland lakes
Recommended from our members
Challenges and Opportunities to Updating Prescribing Information for Longstanding Oncology Drugs.
A number of important drugs used to treat cancer-many of which serve as the backbone of modern chemotherapy regimens-have outdated prescribing information in their drug labeling. The Food and Drug Administration is undertaking a pilot project to develop a process and criteria for updating prescribing information for longstanding oncology drugs, based on the breadth of knowledge the cancer community has accumulated with the use of these drugs over time. This article highlights a number of considerations for labeling updates, including selecting priorities for updating; data sources and evidentiary criteria; as well as the risks, challenges, and opportunities for iterative review to ensure prescribing information for oncology drugs remains relevant to current clinical practice
Understanding sources of methylmercury in songbirds with stable mercury isotopes: Challenges and future directions
Mercury (Hg) stable isotope analysis is an emerging technique that has contributed to a better understanding of many aspects of the biogeochemical cycling of Hg in the environment. However, no study has yet evaluated its usefulness in elucidating the sources of methylmercury (MeHg) in songbird species, a common organism for biomonitoring of Hg in forested ecosystems. In the present pilot study, we examined stable mercury isotope ratios in blood of 4 species of songbirds and the invertebrates they are likely foraging on in multiple habitats in a small watershed of mixed forest and wetlands in Acadia National Park in Maine (USA). We found distinct isotopic signatures of MeHg in invertebrates (both massâ dependent fractionation [as Ă´202Hg] and massâ independent fractionation [as Ă 199Hg]) among 3 interconnected aquatic habitats. It appears that the Hg isotopic compositions in bird blood cannot be fully accounted for by the isotopic compositions of MeHg in lower trophic levels in each of the habitats examined. Furthermore, the bird blood isotope results cannot be simply explained by an isotopic offset as a result of metabolic fractionation of Ă´202Hg (e.g., internal demethylation). Our results suggest that many of the birds sampled obtain MeHg from sources outside the habitat they were captured in. Our findings also indicate that massâ independent fractionation is a more reliable and conservative tracer than massâ dependent fractionation for identifying sources of MeHg in bird blood. The results demonstrate the feasibility of Hg isotope studies of songbirds but suggest that larger numbers of samples and an expanded geographic area of study may be required for conclusive interpretation. Environ Toxicol Chem 2018;37:166â 174. ĂŠ 2017 SETACPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141144/1/etc3941.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141144/2/etc3941_am.pd
Photodegradation of methylmercury in stream ecosystems
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109966/1/lno20135810013.pd
Revealing components of the galaxy population through nonparametric techniques
The distributions of galaxy properties vary with environment, and are often
multimodal, suggesting that the galaxy population may be a combination of
multiple components. The behaviour of these components versus environment holds
details about the processes of galaxy development. To release this information
we apply a novel, nonparametric statistical technique, identifying four
components present in the distribution of galaxy H emission-line
equivalent-widths. We interpret these components as passive, star-forming, and
two varieties of active galactic nuclei. Independent of this interpretation,
the properties of each component are remarkably constant as a function of
environment. Only their relative proportions display substantial variation. The
galaxy population thus appears to comprise distinct components which are
individually independent of environment, with galaxies rapidly transitioning
between components as they move into denser environments.Comment: 12 pages, 10 figures, accepted for publication in MNRA
Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics
Background:
Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer.
Methodology/Principal Findings:
Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer.
Conclusions/Significance:
Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity, specificity and accuracy
Galaxy Zoo: the dependence of morphology and colour on environment
We analyse the relationships between galaxy morphology, colour, environment
and stellar mass using data for over 100,000 objects from Galaxy Zoo, the
largest sample of visually classified morphologies yet compiled. We
conclusively show that colour and morphology fractions are very different
functions of environment. Both are sensitive to stellar mass; however, at fixed
stellar mass, while colour is also highly sensitive to environment, morphology
displays much weaker environmental trends. Only a small part of both relations
can be attributed to variation in the stellar mass function with environment.
Galaxies with high stellar masses are mostly red, in all environments and
irrespective of their morphology. Low stellar-mass galaxies are mostly blue in
low-density environments, but mostly red in high-density environments, again
irrespective of their morphology. The colour-density relation is primarily
driven by variations in colour fractions at fixed morphology, in particular the
fraction of spiral galaxies that have red colours, and especially at low
stellar masses. We demonstrate that our red spirals primarily include galaxies
with true spiral morphology. We clearly show there is an environmental
dependence for colour beyond that for morphology. Before using the Galaxy Zoo
morphologies to produce the above results, we first quantify a luminosity-,
size- and redshift-dependent classification bias that affects this dataset, and
probably most other studies of galaxy population morphology. A correction for
this bias is derived and applied to produce a sample of galaxies with reliable
morphological type likelihoods, on which we base our analysis.Comment: 25 pages, 20 figures (+ 6 pages, 11 figures in appendices);
moderately revised following referee's comments; accepted by MNRA
Galaxy Zoo: Passive Red Spirals
We study the spectroscopic properties and environments of red spiral galaxies
found by the Galaxy Zoo project. By carefully selecting face-on, disk dominated
spirals we construct a sample of truly passive disks (not dust reddened, nor
dominated by old stellar populations in a bulge). As such, our red spirals
represent an interesting set of possible transition objects between normal blue
spirals and red early types. We use SDSS data to investigate the physical
processes which could have turned these objects red without disturbing their
morphology. Red spirals prefer intermediate density regimes, however there are
no obvious correlations between red spiral properties and environment -
environment alone is not sufficient to determine if a spiral will become red.
Red spirals are a small fraction of spirals at low masses, but are a
significant fraction at large stellar masses - massive galaxies are red
independent of morphology. We confirm that red spirals have older stellar popns
and less recent star formation than the main spiral population. While the
presence of spiral arms suggests that major star formation cannot have ceased
long ago, we show that these are not recent post-starbursts, so star formation
must have ceased gradually. Intriguingly, red spirals are ~4 times more likely
than normal spirals to host optically identified Seyfert or LINER, with most of
the difference coming from LINERs. We find a curiously large bar fraction in
the red spirals suggesting that the cessation of star formation and bar
instabilities are strongly correlated. We conclude by discussing the possible
origins. We suggest they may represent the very oldest spiral galaxies which
have already used up their reserves of gas - probably aided by strangulation,
and perhaps bar instabilities moving material around in the disk.Comment: MNRAS in press, 20 pages, 15 figures (v3
- âŚ