12 research outputs found

    ENHANCEMENT OF ENERGY EFFICIENCY AND RELIABILITY OF HEATING SYSTEMS IN THE UDMURT REPUBLIC DUE TO CARRYING OUT INVESTMENT PROGRAMS

    Full text link
    В работе проанализировано повышение надежности и энергоэффективности системы теплоснабжения за счет проведения мероприятий инвестиционной программы конкретной теплоснабжающей организации. Рассмотрены основные компоненты, из которых складывается общий показатель надежности тепловых сетей. Приведены результаты инвестиционных мероприятий.The paper analyzes the increase in the reliability and energy efficiency of the heat supply system through the implementation of measures of the investment program of a specific heat supply organization. The main components that make up the general indicator of the reliability of heating networks are considered. The results of investment activities are presented

    A nonlinear Lagrangian particle model for grains assemblies including grain relative rotations

    Get PDF
    International audienceWe formulate a discrete Lagrangian model for a set of interacting grains, which is purely elastic. The considered degrees of freedom for each grain include placement of barycenter and rotation. Further, we limit the study to the case of planar systems. A representative grain radius is introduced to express the deformation energy to be associated to relative displacements and rotations of interacting grains. We distinguish inter‐grains elongation/compression energy from inter‐grains shear and rotations energies, and we consider an exact finite kinematics in which grain rotations are independent of grain displacements. The equilibrium configurations of the grain assembly are calculated by minimization of deformation energy for selected imposed displacements and rotations at the boundaries. Behaviours of grain assemblies arranged in regular patterns, without and with defects, and similar mechanical properties are simulated. The values of shear, rotation, and compression elastic moduli are varied to investigate the shapes and thicknesses of the layers where deformation energy, relative displacement, and rotations are concentrated. It is found that these concentration bands are close to the boundaries and in correspondence of grain voids. The obtained results question the possibility of introducing a first gradient continuum models for granular media and justify the development of both numerical and theoretical methods for including frictional, plasticity, and damage phenomena in the proposed model

    Dimerization of long hibernation promoting factor from Staphylococcus aureus: Structural analysis and biochemical characterization

    No full text
    © 2019 Elsevier Inc. Staphylococcus aureus hibernation promoting factor (SaHPF) is responsible for the formation of 100S ribosome dimers, which in turn help this pathogen to reduce energy spent under unfavorable conditions. Ribosome dimer formation strongly depends on the dimerization of the C-terminal domain of SaHPF (CTDSaHPF). In this study, we solved the crystal structure of CTDSaHPF at 1.6 Å resolution and obtained a precise arrangement of the dimer interface. Residues Phe160, Val162, Thr171, Ile173, Tyr175, Ile185 andThr187 in the dimer interface of SaHPF protein were mutated and the effects were analyzed for the formation of 100S disomes of ribosomes isolated from S. aureus. It was shown that substitution of any of single residues Phe160, Val162, Ile173, Tyr175 and Ile185 in the SaHPF homodimer interface abolished the ribosome dimerization in vitro

    Dimerization of long hibernation promoting factor from Staphylococcus aureus: Structural analysis and biochemical characterization

    No full text
    © 2019 Elsevier Inc. Staphylococcus aureus hibernation promoting factor (SaHPF) is responsible for the formation of 100S ribosome dimers, which in turn help this pathogen to reduce energy spent under unfavorable conditions. Ribosome dimer formation strongly depends on the dimerization of the C-terminal domain of SaHPF (CTDSaHPF). In this study, we solved the crystal structure of CTDSaHPF at 1.6 Å resolution and obtained a precise arrangement of the dimer interface. Residues Phe160, Val162, Thr171, Ile173, Tyr175, Ile185 andThr187 in the dimer interface of SaHPF protein were mutated and the effects were analyzed for the formation of 100S disomes of ribosomes isolated from S. aureus. It was shown that substitution of any of single residues Phe160, Val162, Ile173, Tyr175 and Ile185 in the SaHPF homodimer interface abolished the ribosome dimerization in vitro

    Dimerization of long hibernation promoting factor from Staphylococcus aureus: Structural analysis and biochemical characterization

    No full text
    International audienceStaphylococcus aureus hibernation promoting factor (SaHPF) is responsible for the formation of 100S ribosome dimers, which in turn help this pathogen to reduce energy spent under unfavorable conditions. Ribosome dimer formation strongly depends on the dimerization of the C-terminal domain of SaHPF (CTDSaHPF). In this study, we solved the crystal structure of CTDSaHPF at 1.6 Å resolution and obtained a precise arrangement of the dimer interface. Residues Phe160, Val162, Thr171, Ile173, Tyr175, Ile185 andThr187 in the dimer interface of SaHPF protein were mutated and the effects were analyzed for the formation of 100S disomes of ribosomes isolated from S. aureus. It was shown that substitution of any of single residues Phe160, Val162, Ile173, Tyr175 and Ile185 in the SaHPF homodimer interface abolished the ribosome dimerization in vitro

    Folding Intermediate and Folding Nucleus for I→N and U→I→N Transitions in Apomyoglobin: Contributions by Conserved and Nonconserved Residues

    Get PDF
    Kinetic investigation on the wild-type apomyoglobin and its 12 mutants with substitutions of hydrophobic residues by Ala was performed using stopped-flow fluorescence. Characteristics of the kinetic intermediate I and the folding nucleus were derived solely from kinetic data, namely, the slow-phase folding rate constants and the burst-phase amplitudes of Trp fluorescence intensity. This allowed us to pioneer the ϕ-analysis for apomyoglobin. As shown, these mutations drastically destabilized the native state N and produced minor (for conserved residues of G, H helices) or even negligible (for nonconserved residues of B, C, D, E helices) destabilizing effect on the state I. On the other hand, conserved residues of A, G, H helices made a smaller contribution to stability of the folding nucleus at the rate-limiting I→N transition than nonconserved residues of B, D, E helices. Thus, conserved side chains of the A-, G-, H-residues become involved in the folding nucleus before crossing the main barrier, whereas nonconserved side chains of the B-, D-, E-residues join the nucleus in the course of the I→N transition

    Circuit Analogies in the Search for New Metamaterials: Phenomenology of a Mechanical Diode

    No full text
    The pantographic metamaterial, a particular metamaterial, composed of two orthogonal families of fibers, with remarkable deformation properties, presents, in case the interconnections between the two layers of fibers are perfect hinges, a mechanical response that recalls by analogy the law characteristic of diodes, in the theory of electrical circuits. In this sense, the pantographic metamaterial represents a sort of mechanical diode
    corecore