198 research outputs found

    Characterization of the Core-Shell Nanoparticles Formed as Soluble Hydrogen-Bonding Interpolymer Complexes at low pH

    Get PDF
    The formation of soluble hydrogen-bonding interpolymer complexes between poly(acrylic acid) (PAA) and poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)-graft-poly(N, N dimethylacrylamide) (P(AA-co-AMPSA)-g-PDMAM) at pH = 2.0 was studied. A viscometric study showed that in semidilute solution a physical gel is formed, due to the interconnection of the anionic P(AA-co-AMPSA) backbone of the graft copolymer, in a transient network, by means of the complexes formed between the PDMAM side chains of the graft copolymer and PAA. Dynamic and static light scattering measurements, in conjunction with small angle neutron scattering measurements, suggest the formation of core-shell colloidal nanoparticles in dilute solution, comprised by an insoluble PAA/PDMAM core surrounded by an anionic P(AA-co-AMPSA) corona. Even if larger clusters are formed in semidilute solution, the size of the insoluble core remains practically stable. Atomic force microscopy performed under ambient conditions, reveal that the particles collapse and flatten upon deposition on a substrate, with dimensions close to the ones of the dry hydrophobic core

    Elektrokemijska detekcija mikročestica gela u morskoj vodi

    Get PDF
    We present the first atomic force microscopy (AFM) images of the native marine gel network and a new type of electrochemical signals of individual gel microparticles in seawater. Gel microparticles in seawater are selectively detected through specific amperometric signals using a dropping mercury electrode (DME) as a sensor. We have demonstrated that organic microparticles naturally present in Northern Adriatic seawater can be detected as single particles and sorted at the DME/seawater interface according to their hydrophobicity and supramolecular organization.Prvi puta prikazana je nanostruktura morskog gela oslikana mikroskopijom atomskih sila i nova vrsta elektrokemijskih signala mikročestica gela u morskoj vodi. Čestice gela u morskoj vodi selektivno se detektiraju kao specifični amperometrijski signali primjenom živine kapajuće elektrode kao senzora. Svaki signal je rezultat sudara mikročestice gela s rastućom površinom živine elektrode. Primjenom amperometrijske tehnike i živine kapajuće elektrode kao senzora organske mikročestice detektiraju se na dinamičkoj međupovršini živina elektroda/morska voda temeljem svojstava hidrofobnosti i supramolekulske organizacije kao površinski-aktivne i gel čestice

    Investigations by AFM of Ageing Mechanisms in PLA-Flax Fibre Composites during Garden Composting.

    Get PDF
    PLA-flax non-woven composites are promising materials, coupling high performance and possible degradation at their end of life. To explore their ageing mechanisms during garden composting, microstructural investigations were carried out through scanning electron microscopy (SEM) and atomic force microscopy (AFM). We observe that flax fibres preferentially degrade 'inwards' from the edge to the core of the composite. In addition, progressive erosion of the cell walls occurs within the fibres themselves, 'outwards' from the central lumen to the periphery primary wall. This preferential degradation is reflected in the decrease in indentation modulus from around 23 GPa for fibres located in the preserved core of the composite to 3-4 GPa for the remaining outer-most cell wall crowns located at the edge of the sample that is in contact with the compost. Ageing of the PLA matrix is less drastic with a relatively stable indentation modulus. Nevertheless, a change in the PLA morphology, a significant decrease in its roughness and increase of porosity, can be observed towards the edge of the sample, in comparison to the core. This work highlights the important role of intrinsic fibre porosity, called lumen, which is suspected to be a major variable of the compost ageing process, providing pathways of entry for moisture and microorganisms that are involved in cell wall degradation

    Structure of laponite-styrene precursor dispersions for production of advanced polymer-clay nanocomposites

    Get PDF
    One method for production of polymer-clay nanocomposites involves dispersal of surface-modified clay in a polymerisable monomeric solvent, followed by fast in situ polymerisation. In order to tailor the properties of the final material we aim to control the dispersion state of the clay in the precursor solvent. Here, we study dispersions of surface-modified Laponite, a synthetic clay, in styrene via large-scale Monte-Carlo simulations and experimentally, using small angle X-ray and static light scattering. By tuning the effective interaction between simulated laponite particles we are able to reproduce the experimental scattering intensity patterns for this system, with good accuracy over a wide range of length scales. However, this agreement could only be obtained by introducing a permanent electrostatic dipole moment into the plane of each Laponite particle, which we explain in terms of the distribution of substituted metal atoms within each Laponite particle. This suggests that Laponite dispersions, and perhaps other clay suspensions, should display some of the structural characteristics of dipolar fluids. Our simulated structures show aggregation regimes ranging from networks of long chains to dense clusters of Laponite particles, and we also obtain some intriguing ‘globular’ clusters, similar to capsids. We see no indication of any ‘house-of-cards’ structures. The simulation that most closely matches experimental results indicates that gel-like networks are obtained in Laponite dispersions, which however appear optically clear and non-sedimenting over extended periods of time. This suggests it could be difficult to obtain truly isotropic equilibrium dispersion as a starting point for synthesis of advanced polymer-clay nanocomposites with controlled structures

    Dynamical heterogeneity in aging colloidal glasses of Laponite

    Full text link
    Glasses behave as solids due to their long relaxation time; however the origin of this slow response remains a puzzle. Growing dynamic length scales due to cooperative motion of particles are believed to be central to the understanding of both the slow dynamics and the emergence of rigidity. Here, we provide experimental evidence of a growing dynamical heterogeneity length scale that increases with increasing waiting time in an aging colloidal glass of Laponite. The signature of heterogeneity in the dynamics follows from dynamic light scattering measurements in which we study both the rotational and translational diffusion of the disk-shaped particles of Laponite in suspension. These measurements are accompanied by simultaneous microrheology and macroscopic rheology experiments. We find that rotational diffusion of particles slows down at a faster rate than their translational motion. Such decoupling of translational and orientational degrees of freedom finds its origin in the dynamic heterogeneity since rotation and translation probe different length scales in the sample. The macroscopic rheology experiments show that the low frequency shear viscosity increases at a much faster rate than both rotational and translational diffusive relaxation times.Comment: 12 pages, 5 figures, Accepted in Soft Matter 201

    Polymer Networks Produced by Marine Diatoms in the Northern Adriatic Sea

    Get PDF
    Using high resolution molecular technique of atomic force microscopy, we address the extracellular polymer production of Adriatic diatom Cylindrotheca closterium analyzed at the single cell level and the supramolecular organization of gel phase isolated from the Northern Adriatic macroaggregates. Our results revealed that extracellular polysaccharides freshly produced by marine diatoms can self-assemble directly to form gel network characteristics of the macroscopic gel phase in the natural aquatorium. Based on the experiments performed with isolated polysaccharide fractions of C. closterium and of macroaggregates gel phase, we demonstrated that the polysaccharide self-assembly into gel network can proceed independent of any bacterial mediation or interaction with inorganic particles

    Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels

    Get PDF
    Marine-gel biopolymers were recently visualized at the molecular level using atomic force microscopy (AFM) to reveal fine fibril-forming networks with low to high degrees of cross-linking. In this work, we use force spectroscopy to quantify the intra- and intermolecular forces within the marine-gel network. Combining force measurements, AFM imaging, and the known chemical composition of marine gels allows us to identify the microscopic origins of distinct mechanical responses. At the single-fibril level, we uncover force-extension curves that resemble those of individual polysaccharide fibrils. They exhibit entropic elasticity followed by extensions associated with chair-to-boat transitions specific to the type of polysaccharide at high forces. Surprisingly, a low degree of cross-linking leads to sawtooth patterns that we attribute to the unraveling of polysaccharide entanglements. At a high degree of cross-linking, we observe force plateaus that arise from unzipping, as well as unwinding, of helical bundles. Finally, the complex 3D network structure gives rise to force staircases of increasing height that correspond to the hierarchical peeling of fibrils away from the junction zones. In addition, we show that these diverse mechanical responses also arise in reconstituted polysaccharide gels, which highlights their dominant role in the mechanical architecture of marine gels
    corecore